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Abstract.  In this work, a novel higher-order shear deformation theory (HSDT) is presented for buckling analysis 
of functionally graded plates. The present theory accounts for both shear deformation and thickness stretching effects 
by a parabolic variation of all displacements across the thickness, and satisfies the stress-free boundary conditions on 
the upper and lower surfaces of the plate without requiring any shear correction factor. The number of independent 
unknowns of this theory is four, as against five in other shear deformation theories. Unlike the conventional HSDT, 
the present one has a new displacement field which introduces undetermined integral variables. The material 
properties of the faces of sandwich plate are assumed to vary according to a power law distribution in terms of the 
volume fractions of the constituents. The core layer is made of an isotropic ceramic material. The governing 
equations are obtained by the principle of virtual work. Analytical solutions for the buckling analyses are solved for 
simply supported sandwich plate. Numerical examples are given to show the effects of varying gradients, thickness 
stretching, and thickness to length ratios on the critical buckling loads of functionally graded sandwich plate. 
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1. Introduction and literature review 
 

Functionally graduated plates (FGM) are widely used in various topics of engineering such as 

mechanics, aerospace, chemistry, electricity, etc (Avcar 2019, Shahsavari et al. 2018, Faleh et al. 
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2018, Abualnour et al. 2018, Avcar and Mohammed 2018, Mouli et al. 2018, Kar et al. 2017, Kar 

and Panda 2016 and 2017, Kar et al. 2016, Akbas 2015, Kar and Panda 2015, Behravan Rad 2015, 

Avcar 2015 and 2016, Ahmed 2014). The advantages of FGM structures have a high thermal 

resistance and a gradual change in material characteristics along the chosen direction, like 

thickness, for example. For the design of FGM plates for application in a high temperature 

environment, thermomechanical stresses and deflections are important parameters to consider. 

The study of plates designed with this type of material requires more precise theories to predict 

their response. Shear deformation has a significant effect on functional gradient plate responses; 

shear deformation theories are used to account for the effects of warping for thick plates. These 

theories include the first-order shear deformation theory (FSDT), which accounts for the shear 

deformation effect represented by a linear variation in plane displacements across the thickness, 

and verifies the null conditions of transverse shear stresses on the plane. The upper and lower 

surfaces of the plate, a shear correction factor that depends on many parameters is required to 

correct the error due to a constant shear stress assumption across the thickness (Belifa et al. 2016, 

Semmah et al. 2014, Benzair et al. 2008). 

The higher order shear deformation theories (HSDT) that account for shear deformation effects, 

and satisfy the nullity of transverse shear stresses on the upper and lower surfaces of the plate; 

which leads to the no need for a correction factor (Berrabah et al. 2013, Panda and Katariya 2015, 

Katariya and Panda 2016); these theories are proposed assuming higher order variations of in-

plane displacements (Reddy 2000, Xiang et al. 2011; Kolahchi et al. 2015, Aldousari 2016) or 

both in plane and transversal displacements across the thickness ( Matsunaga 2008, Chen et al. 

2009, Reddy 2011, Akavci 2016). 

The use of sandwich structures offers great potential for large civil infrastructure projects, such 

as industrial buildings and vehicular bridges. In recent years, the functionally graded materials 

(FGMs) are taken into account in the sandwich structure industries (Mehar et al. 2017, Katariya et 

al. 2017a, Abdelaziz et al. 2017, Mehar and Panda 2018, Belabed et al. 2018, Katariya et al. 

2018, Sharma et al. 2018, Dash et al. 2018 and 2019, Mehar et al. 2019). 

Two categories of FG sandwich structures commonly exist: homogeneous face sheet with FG-

core and FG face sheet with homogeneous core. For the case of homogeneous core, the soft core is 

commonly employed because of the light weight and high bending stiffness in the structural design. 

The homogeneous hardcore is also used in other fields such as control or in the thermal 

environments. These two categories of FG sandwich structures are widely used in various 

problems such as vibration, bending or buckling. For functional materials, the theory of plane 

elasticity has made great progress for both plates and beams. However, for FG sandwich structures, 

related studies are so limited. 

Zenkour and Sobhy (2010) investigated the thermal buckling of various types of FG sandwich 

plate using sinusoidal shear deformation plate theory. An investigation of bending response of a 

simply supported FGM viscoelastic sandwich beam with elastic core resting on Pasternak’s elastic 

foundations was presented by Zenkour et al. (2010). Bhangale and Ganesan (2006) studied 

vibration and buckling analysis of a FG sandwich beam having constrained viscoelastic layer in 

thermal environment by using finite element formulation.  

Bui et al. (2013) investigated transient responses and natural frequencies of sandwich beams 

with inhomogeneous FG core using a truly mesh free radial point interpolation method. Sobhy 

(2013) studied the vibration and buckling behavior of exponentially graded material sandwich 

plate resting on elastic foundations under various boundary conditions. Swaminathan and 

Naveenkumar (2014) presented some higher order refined computational models for the stability 
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analysis of FGM plates. Ait Yahia et al. (2015) studied wave propagation in order to compare 

different shear theories and porosities solution in FG plates. Ait Atmane et al. (2015) studied a 

computational shear displacement model for vibrational analysis of functionally graded beams 

with porosities. Beldjelili et al. (2016) analyzed the hygro-thermo-mechanical bending response of 

S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate 

theory. Bouderba et al. (2016) studied the thermal stability of FG sandwich plates using a simple 

shear deformation theory. Becheri et al. (2016) analyzed the buckling of symmetrically laminated 

plates using nth-order shear deformation theory with curvature effects. Houari et al. (2016) 

presented a new simple three-unknown sinusoidal shear deformation theory for FG plates. 

Benbakhti et al. (2016) proposed an analytical formulation of the static thermomechanical problem 

of functionally graduated sandwich plates by employing a new type of quasi-3D plate shear 

deformation theory, with the addition of the integral term in the displacement field which leads to 

a reduction in the number of variables and governing equations. Benadoudada et al. (2017) studied 

wave propagation in order to understand the dispersive law and porosities solution in FG beams. 

A large application of the thickness stretching effect in FG plates has been proved in the study 

of Carrera et al. (2011). Bennai et al. (2015) used a new higher-order shear and normal 

deformation theory for buckling, bending and vibration of functionally graded sandwich beams; 

Ait Atmane et al. (2017) studied the effect of thickness stretching and porosity on mechanical 

response of a functionally graded beams resting on elastic foundations. This effect has an 

important role in thick FG plates and beams; it was taken into account by (Hebali et al. 2014, 

Belabed et al. 2014, Hamidi et al. 2015, Larbi Chaht et al. 2015, Bourada et al. 2015, Draiche et al. 

2016, Bennoun et al. 2016, Benahmed et al. 2017, Sekkal et al. 2017, Bouafia et al. 2017, 

Katariya et al. 2017b, Benchohra et al. 2018, Karami et al. 2018, Khiloun et al. 2019, Zaoui et al. 

2019).  

In this work, a new four-variable plate theory is developed to investigate the buckling of 

sandwich plates by introducing the thickness stretching effect of FGM plates. In the present theory, 

the displacement field introduces undetermined integral variables. As the plate is supposed to be 

isotropic at any point in its volume, with a Young’s modulus varying through the thickness 

according to a power law as a function of the volume fraction of the constituents of the plate, 

whereas, the Poisson’s ratio is assumed to be constant. 

Equilibrium equations for FGM sandwich plates are obtained using the virtual works principle. 

The analytical relationships of the plate are obtained using Navier’s solutions. 

Numerical results for uni-axial and bi-axial critical buckling loads have been studied and 

presented to illustrate the accuracy and efficiency of the quasi-3D theory model by comparing the 

results obtained with those determined by the TSDPT and SSDPT theories of Zenkour (2005) , 

Neves et al. (2012) , and Mahmoud and Tounsi (2017). 

 

 

2. Theory and formulation for functionally graded sandwich plate 
 

2.1 Problem formulation 
 
In this work, a rectangular sandwich plate of length a , width b  and thickness h  is 

considered. The coordinate system is chosen such that the x-y plane coincides with the mid-plane 

of the plate (  2/,2/ hhz +− ). The core of the sandwich plate is made of a ceramic material and 

skins are consisting of FGM within the thickness direction. In the lower skin, a mixture of  
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Fig. 1 Geometry and coordinates of rectangular FGM sandwich plate 

 

 

ceramics and metals is changing from pure metal ( 2/0 hhz −==  ) to pure ceramic while the top 

skin face changes continuously from pure ceramic surface to pure metal surface ( 2/3 hhz +== ) as 

shown in Fig. 1. A simple power law in terms of the volume fraction of the ceramic phase is 

considered: 
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where 
)(nV , ( 3,2,1=n ) denotes the volume fraction function of layer n ; k  is the volume 

fraction index ( + k0 ), which dictates the material variation profile through the height of 

plate. The effective material properties, like Young’s modulus E , Poisson’s ratio , and mass 

density  , then can be expressed by the rule of mixture Zenkour (2010), Bourada et al. (2012) as 

follows:  

( ) )(

212

)(  )( nn VPPPzP −+=  (2) 

where 
)(nP  is the effective material property of FGM of layer n . Where, 1P  and 2P  are the 

properties of the top and bottom faces of layer 1, respectively, and vice versa for layer 3 depending 

on the volume fraction 
)(nV , ( 3,2,1=n ).For simplicity, Poisson’s ratio of plate is assumed to be 
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constant in this study for that the effect of Poisson’s ratio on the deformation is much less than that 

of Young’s modulus Dellal and Erdogan (1983). 
 

2.2 Kinematics and Elastic stress-strain relations 
 
The displacement field of the present theory is formulated based on the following hypotheses: 

(1) The transverse deflection is superposed into three parts namely: bending, shear and stretching 

components; (2) the in-plane displacements are superposed also into three parts namely: extension, 

bending and shear components; (3) the bending components of the in-plane displacements are 

identical to those used in the classical plate theory (CPT); and (4) the shear parts of the in-plane 

displacements lead to the hyperbolic variations of shear strains as well as the shear stresses across 

the thickness of the plate in such a way that the shear stresses becomes zero on the top and bottom 

surfaces of the plate. Based on these assumptions, the following displacement field relations can 

be obtained 
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The coefficients 
1k  and 

2k  depends on the geometry. It can be seen that the kinematic in Eq. 

(3) introduces only four unknowns (
0u , 

0v , 
0w  and  ).  

In this study, the present HSDT is obtained by setting: 
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The strain-displacement expressions, based on this formulation, are given as follows: 
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The integrals presented in the above equations shall be resolved by a Navier type method and 

can be expressed as follows: 
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where the coefficients 'A  and 'B  are considered according to the type of solution employed, 

in this case via Navier method. Therefore, 'A , 'B , 1k  and 2k  are expressed as follows: 
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where   and   are defined in expression (23). 

The linear constitutive relations are given below: 
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where ijC  are the three-dimensional elastic constants defined by 
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2.3 Governing Equations 
 

Hamilton’s principle is herein employed to deduce the equations of motion (Bouazza et al. 

2016 and 2018, Bellifa et al. 2017, Attia et al. 2018, Bakhadda et al. 2018, Bourada et al. 2018 

and 2019): 
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Where U  is the variation of strain energy; V   is the variation of the external work done by 

external load applied to the plate. 

The variation of strain energy of the plate is expressed by 
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Where (
000 ,, xyyx NNN ) are in-plane applied loads. 

By substituting Eqs. (12) and (14) into Eq. (11), the following can be derived: 
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Substituting Eq. (5) into Eq. (9) and the subsequent results into Eqs. (13), the stress resultants 

are obtained in terms of strains as following compact form: 
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and stiffness components are given as: 
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By substituting Eq. (18) into Eq. (16), the equations of motion can be expressed in terms of 

displacements ( 0u , 0v , 0w ,  ) and the appropriate equations take the form: 
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where ijd , ijld  and ijlmd  are the following differential operators:  
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3. Analytical solutions 
 

The Navier solution procedure is employed to determine the analytical solutions for which the 

displacement variables are expressed as product of arbitrary parameters and known trigonometric 

functions to respect the equations of motion and boundary conditions. 
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where  is the frequency of free vibration of the plate, 1−=i  the imaginary unit. 

with 

am / = and bn / =  (23) 

Considering that the plate is subjected to in-plane compressive forces of form: 0

0 NN x −= , 

0

0  NN y −= , 00 =xyN ,
00

xy NN=  (here   are non-dimensional load parameter). 

Substituting Eq. (22) into Eq. (20), the following problem is obtained: 
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The critical buckling loads ( crN ) can be obtained from the stability problem in Eq. (24).  

 

 

4. Numerical results and discussions 
 

In this section, various numerical examples solved are described and discussed for establishing 

the efficiency and the accuracy of the present theory for the buckling analysis of FGM sandwich 

plates. For all the problems a simply supported (diaphragm supported) plate is considered for the  

analysis. The core material of the present sandwich plate is fully ceramic. The bottom skin varies 

from a metal-rich surface to a ceramic-rich surface while the top skin face varies from a ceramic-

rich surface to a metal-rich surface.  

The material properties are 
070EEm =   (Aluminium, Al);and 

0380EEc = (Alumina, 

Al2O3) being GPaE 10 = .  Poisson’s ratio is 3.0===  cm
. 

for both aluminum and alumina. The non-dimensional parameter used is 

0

2

2

100 Eh

aN
N cr

cr =  (26) 
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(a) Plate subjected to uniaxial compressive load
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(b) Plate subjected to biaxial compressive load

( )1 =
 

Fig. 2 Nondimensional critical buckling load(𝑁𝑐𝑟) as a function of side-to-thickness ratio (b/h) of (1-2-

1) FGM sandwich plates for various values of k 
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(a) Plate subjected to uniaxial compressive load

 ( )0 =  
(b) Plate subjected to biaxial compressive load

( )1 =
 

Fig. 3 Nondimensional critical buckling load (𝑁𝑐𝑟) as a function of side-to-thickness ratio (b/h) of (1-0-

1) FGM sandwich plates for various values of k 
 

 

Tables 1 and 2 respectively list the nondimensionalized values of uniaxial and biaxial critical 

buckling loads in an FGM sandwich plate for various values of power law parameter and thickness 

of the core with respect to face sheets. They are carried out for four types of plates with different 

values of the power-law index. The present theory with only four unknowns provides similar 

results to those predicted by the hyperbolic plate theory (HPT) proposed by Mahmoud and Tounsi 

(2017) with five unknowns also the results are compared with the quasi-3D hyperbolic sine shear 

deformation theory of Neves et al. (2012). In addition, the results of a third-order shear 

deformation plate theory (TSDPT) (Zenkour, 2005) and a sinusoidal shear deformation plate 

theory (SSDPT) (Zenkour 2005) are also provided to show the importance of including the 

thickness-stretching effect according to these tables the critical buckling loads of functionally  
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Table 1 Comparison of nondimensional critical buckling load of square FG sandwich plates subjected to 

uniaxial compressive load (a/h=10). 

k Theory 
crN  

1-0-1 2-1-2 1-1-1 1-2-1 

0 

TSDPT (*) 13.00495 13.00495 13.00495 13.00495 

SSDPT (*) 13.00606 13.00606 13.00606 13.00606 

Neves et al. (2012) 12.95304 12.95304 12.95304 12.95304 

Mahmoud and Tounsi (2017) 12.98429 12.98429 12.98429 12.98429 

Present 13.32807 13.32807 13.32807 13.32807 

0.5 

TSDPT (*) 7.36437 7.94084 8.43645 9.21681 

SSDPT (*) 7.36568 7.94195 8.43712 9.21670 

Neves et al. (2012) 7.16191 7.71617 8.19283 8.94221 

Mahmoud and Tounsi (2017) 7.35541 7.93147 8.42681 9.20640 

Present 7.43811 8.02231 8.53000 9.33621 

1 

TSDPT (*) 5.16713 5.84006 6.46474 7.50656 

SSDPT (*) 5.16846 5.84119 6.46539 7.50629 

Neves et al. (2012) 5.06123 5.71125 6.31501 7.32025 

Mahmoud and Tounsi (2017) 5.16191 5.83465 6.45911 7.49996 

Present 5.19181 5.86778 6.50114 7.56568 

5 

TSDPT (*) 2.65821 3.04257 3.57956 4.73469 

SSDPT (*) 2.66006 3.04406 3.58063 4.73488 

Neves et al. (2012) 2.63658 3.00819 3.53014 4.64707 

Mahmoud and Tounsi (2017) 2.65398 3.04023 3.57873 4.73404 

Present 2.66430 3.04222 3.58076 4.74215 

10 

TSDPT (*) 2.48727 2.74632 3.19471 4.27991 

SSDPT (*) 2.48928 2.74844 3.19456 4.38175 

Neves et al. (2012) 2.47199 2.72089 3.15785 4.20550 

Mahmoud and Tounsi (2017) 2.48217 2.74301 3.19359 4.28002 

Present 2.50219 2.74495 3.19447 4.28329 

(*) Zenkour (2005)  

 

 

graded sandwich plate  decrease with the increase of the power-law index. 

Figures 2 and 3 show the variation of the critical buckling loads of the (1–2–1) and (1–0–1) 

types of square FG sandwich plates with homogeneous hardcore versus side-to-thickness ratio 

using the present new simple quasi-3D hyperbolic shear deformation theory. It can be seen that the 

critical buckling loads become maximum for the ceramic plates and minimum for the metal plates. 

It is seen that the results increase smoothly as the amount of ceramic in the sandwich plate 

increases. Also, the buckling load of plate under uniaxial compression is almost the twice of that of 

the case of the plate under biaxial compression.  

For sandwich plate with homogeneous hardcore, It can be also seen, that as the material 

parameter increases, the critical buckling loads decrease. 
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Table 2 Comparison of nondimensional critical buckling load of square FG sandwich plates subjected to 

biaxial compressive load (𝛾 = 1,h/b=0.1) 

k Theory crN  
1-0-1 2-1-2 1-1-1 1-2-1 

0 

TSDPT (*) 6.50248 6.50248 6.50248 6.50248 

SSDPT (*) 6.50303 6.50303 6.50303 6.50303 

Neves et al. (2012) 6.47652 6.47652 6.47652 6.47652 

Mahmoud and Tounsi (2017) 6.49215 6.49215 6.49215 6.49215 

Present 6.66404 6.66404 6.66404 6.66404 

0.5 

TSDPT (*) 3.68219 3.97042 4.21823 4.60841 

SSDPT (*) 3.68284 3.97097 4.21856 4.60835 

Neves et al. (2012) 3.58096 3.85809 4.09641 4.47110 

Mahmoud and Tounsi (2017) 3.67770 3.96573 4.21340 4.60320 

Present 3.71905 4.01115 4.26500 4.66810 

1 

TSDPT (*) 2.58357 2.92003 3.23237 3.75328 

SSDPT (*) 2.58423 2.92060 3.23270 3.75314 

Neves et al. (2012) 2.53062 2.85563 3.15750 3.66013 

Mahmoud and Tounsi (2017) 2.58096 2.91732 3.22956 3.74998 

Present 2.59590 2.93389 3.25057 3.78284 

5 

TSDPT (*) 1.32910 1.52129 1.78978 2.36734 

SSDPT (*) 1.33003 1.52203 1.79032 2.36744 

Neves et al. (2012) 1.31829 1.50409 1.76507 2.32354 

Mahmoud and Tounsi (2017) 1.32699 1.52012 1.78936 2.36702 

Present 1.33215 1.52111 1.79038 2.37107 

10 

TSDPT (*) 1.24363 1.37316 1.59736 2.13995 

SSDPT (*) 1.24475 1.37422 1.59728 2.19087 

Neves et al. (2012) 1.23599 1.36044 1.57893 2.10275 

Mahmoud and Tounsi (2017) 1.24109 1.37150 1.5968 2.14001 

Present 1.25110 1.37247 1.59724 2.14173 

(*) Zenkour (2005)  
 

 

5. Summary and conclusions 
 

A new quasi-3D hyperbolic plate theory with stretching effect for the buckling analysis of 

functionally graded sandwich plates is presented in this paper. The main advantage of this 

approach is that, in addition to incorporating the thickness stretching effect. The equations of 

motion are obtained by utilizing the principle of virtual work . It is based on the assumption that 

the transverse displacements consist of bending and shear components. Results indicate that the 

present approach is able to introduce the thickness stretching effect and providing very accurate 

results compared with the other existing higher-order plate theories. 
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