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Abstract.  This paper is concerned to investigate the static bending and buckling response of Functionally Graded 
(FG) nanobeams by employing a new refined first order shear deformation beam theory. The elegancy of this novel 
theory is that, not only has one variable in terms of equations of motion as in classical beam theory (EBT) but also 
accounts for the effect of transverse shear deformation without any requirement of Shear Correction Factors (SCFs). 
The material properties of FG nanobeam are supposed to change gradually across the thickness direction and are 
evaluated via the power-law model. Nonlocal elasticity theory of Eringen is incorporated in order to capture the small 
scale effect into current investigation. The nonlocal governing equations of motion and boundary conditions are 
obtained through Hamilton’s principle and they are solved using analytical solution. The obtained results are compared 
with some cases existing in the literature. Effect of various parameters such as length to thickness ratio, nonlocal 
parameter and material index on the static and stability behaviors of the FG nanobeam are perused and discussed in 
detail. 
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1. Introduction 
 

Recent rapid advances in the field of nanotechnology especially in the design of miniaturized 

devices strongly motivated the industrialists to develop and integrate structural elements such as 

beams and plates at nano or micro length scale. These nanoscale engineering structures show 

exceptional mechanical, thermal, magnetic and electrical properties, which led to stimulation in 

modeling of micro/nano scale structures (Heireche et al. 2008a, Alizada and Sofiyev 2011, Ebrahimi 

et al. 2016). It is seen that the size effect has a key role on the static and stability behaviors of 

material in these applications. Nanosize engineering materials have attracted wide interest in modern 

science and technology since the invention of Carbon Nanotubes (CNTs) by Iijima (1991). These 

types of nanostructures have important mechanical, thermal and electrical features that are greater 
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to the usual structural materials. Lately, nanobeams and CNTs find a lot of use (Pradhan and 

Mandhal 2013, Wang 2005, Wang and Varadan 2006) such as actuators, sensors, transistors, probes 

and resonators in several NEMSs. It is well known that the classical continuum theory is very 

adequate in the mechanical investigation of structures at the macroscopic scales, but its applicability 

to capture the size dependency on the mechanical behaviors at nano and micro scale structures is 

very limited, say unachievable. Among techniques that are employed to capture the size effects is 

the well know molecular dynamic simulations which is regarded as a robust and precise implement 

to examine structural elements at nanoscale. But even the molecular dynamic simulation at nano 

scale is computationally demanding for simulation the nanostructures with huge numbers of atoms. 

So, there is a need for some advanced model that can capture efficiently the length scale effect. One 

of a new theory the most known and the most used (Eringen 1972, 1983) nonlocal elasticity theory 

which is the most commonly used in continuum mechanics theory and considers small scale effects 

with good capacity to simulate nano/micro scale devices and systems. This theory supposes that 

strain-stress state at every location point is a function of corresponding states of all neighbor points 

of the continuum body. Therefore, in order to take into account the small scales effects this theory 

must be considered for best design of structures at nanoscale. To achieve this objective, a number of 

contributions have been published based on Eringen’s nonlocal elasticity theory to examine the size-

dependent mechanical response of structural systems (Reddy 2007, Peddieson et al. 2003, Lu et al. 

2009). Besides, some refined shear and normal deformation theories which have been developed 

recently by several authors were also exploited to study of bending, buckling and vibration of 

nanobeams and nanoplates, one can cite the following works (Tounsi et al. 2013a, Kheroubi et al. 

2016, Zenkour and Sobhy 2015, Larbi Chat et al. 2015, Houari et al. 2018, Sekkal et al. 2017). 

Functionally Graded Materials (FGMs), which are originally created by group of Japanese 

aerospace researchers (Koizumi 1997), are types of composite materials formed of two or more 

constituent phases in which material properties diverge smoothly from one surface to the other. 

Consequently, FGMs are able to avoid high interlaminar shear stresses, stress concentration and 

delamination cases which are known sometimes as defects of laminated composite materials. A 

FGM consisting of ceramic and metal possesses superior thermal resistance and enhanced ductility 

which are inspired from the ceramic and metal phases, respectively. Owning these remarkable 

features, FGMs are applicable to various fields of engineering including aerospace, nuclear power, 

chemistry and mechanical engineering. Hence, presenting these novel mechanical features, studying 

the mechanical responses of structural components made of non-homogenous materials has received 

a considerable attention by several investigators (Sallai et al. 2009, Barati and Shahverdi 2016, Thai 

and Vo 2012, Tounsi et al. 2013a, Zidi et al. 2014, 2017, Bachir Bouiadjra et al. 2012, 2013, 2018, 

Bouremana et al. 2013, Bourada et al. 2012, El Meiche et al. 2011, Akavci 2016, Hebali et al. 2016, 

Kar et al. 2016, Bensaid et al. 2017, El-Haina et al. 2017, Ebrahimi and Jafari 2016, Abualnour et 

al. 2018). Recently, FGMs find rising applications in micro- and nano-scale structures such as thin 

films in thin films in the form of shape memory alloys, Atomic Force Microscopes (AFMs), nano-

implants in medical engineering, nanotubes in aircraft wings, nanobeams for spacecraft chassis 

structures etc. So, studying mechanical properties, deflection, vibration and stability behaviors of 

them are of significant importance to the design and manufacture of FG MEMS/NEMS, and many 

papers lately have been published in this context. Janghorban and Zare (2011) explored nonlocal 

free vibration functionally graded carbon nantubes FG-CNT nanobeams by employing the 

differential quadrature method. Eltaher et al. (2012) investigated the free vibration of FGM 

nanobeam based on the nonlocal Euler-Bernoulli beam theory by developing a finite element model. 

Şimşek and Yurtçu (2013) examined the static bending and buckling of FGM nanobeams based on 
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analytical approach and both nonlocal Timoshenko and Euler Bernoulli beam theories. In another 

work, Şimşek (2014) utilized Eringen’s nonlocal elasticity theory and non-classical beam model to 

investigate nonlinear vibration of nanobeams considering various boundary conditions. Besides a 

semi-analytical was implemented by Ebrahimi and his coworkers (Ebrahimi et al. 2015a, Ebrahimi 

and Salari 2015a-c, 2016) to study vibration and buckling behaviors of FG nanobeams. Sobhy (2015) 

researched the bending behavior, free vibration, under both mechanical and thermal buckling of FG 

nanoplates embedded in an elastic medium by using the four-unknown shear deformation theory in 

conjunction Eringen’s nonlocal elasticity theory. Kolahchi et al. (2015) contributed to the bending 

behavior of FG nanoplates by using a new sinusoidal shear deformation theory. Larbi Chaht et al. 

(2015) studied the static bending and buckling of a FG nanobeam employing the nonlocal sinusoidal 

shear and normal beam theory. Ebrahimi and Barati (2016) formulated a nonlocal higher order shear 

deformation beam model for dynamic analysis of size-dependent FG nanobeams. Zemri et al. (2015) 

studied the mechanical response of FG nanosize beam via a refined nonlocal shear deformation 

beam theory. Ahouel et al. (2016) proposed a nonlocal trigonometric beam theory for bending, 

buckling and vibration of FG nanobeams. They also are including the neutral surface position 

concept in their investigation. Belkorissat et al. (2015) examined the vibration properties of FG 

nano-plate utilizing a new nonlocal refined four variable theory. Bounouara et al. (2016) employed 

for the first time a nonlocal zeroth-order shear deformation theory for free vibration analysis of FG 

nanoscale plates resting on elastic foundation. A unified higher order beam theory which contains 

various beam theories as special cases for buckling of a FG microbeam embedded in elastic 

Pasternak medium is proposed by Şimşek and Reddy (2013). Recently, Bouafia et al. (2017) 

employed a nonlocal quasi-3D theory to investigate the bending and free flexural vibration behaviors 

of functionally graded nanobeams. 

Recent progress in plate and beam theories led to a new kind of refined Higher order Shear 

Deformation Theories (HSDTs) with a more reduced number of variables (three and single variables) 

for the plate and beam theories (Endo 2015, Senjanovic et al. 2013, Kiendl et al. 2015, Shimpi et al. 

2017), meaning that they are more less expensive than the classical and refined HSDTs in term of 

computational cost. Based on this idea a number of investigations have been provided recently. 

Sayaad and Ghugal (2016) examined the bending, buckling and free vibration of homogenous beams 

by developing a single variable higher order refined beam theories. Thai et al. (2017) proposed a 

new simple shear deformation theory for isotropic plates, in which the number of unknowns of the 

presented theory was reduced from two to one as in the classical plate theory. This model has been 

used in another work (Thai et al. 2018) to investigate static bending and free vibration of isotropic 

nanobeams. A new three unknowns model as the case of the Classical Plate Theory (CPT) was 

elaborated by Tounsi et al. (2016) and Houari et al. (2016) for static, buckling and vibration analysis 

of both functionally graded and sandwich plates. Zidi et al. (2017) presented a novel simple two-

unknown higher-order hyperbolic shear deformation theory for bending and dynamic behaviors of 

functionally graded beams. Nguyen et al. (2017) developed a generalized formulation of three-

variable plate theory and an efficient computational approach based on IGA for analyzing 

functionally graded plates. Kaci et al. (2018) developed an exact analytical solution post-buckling 

analysis of shear-deformable composite beams based on a novel simple two-unknown beam theory. 

The purpose of this study is to employ a new recently developed first order shear deformation 

beam theory for bending and buckling of FGM nanobeams. Just one unknown displacement function 

is used in the present refined model against three unknown displacement functions used in the 

existing ones. The material properties of the FG nanobeam are supposed to be graded in the thickness 

direction according to the power law variation. In order to capture size effect, Eringen’s nonlocal  
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Fig. 1 Geometry and coordinates of functionally graded nano beam  

 

 

elasticity theory is incorporated in the present investigation. Governing equations and associated 

boundary conditions for the bending and buckling of a nonlocal FG nanobeam have been derived 

via principal of the minimum total potential energy. These equations are solved by employing an 

analytical method and numerical solutions are obtained. Exactness of the results is examined using 

available date in the literature. The effects of small scale parameter, material graduation, and aspect 

ratio on the bending, buckling and vibration responses of FGM nanobeam are investigated. 

 

 

2. Mathematical formulations 
 
 

2.1 The material properties of FG nanobeams 
 

One of the most constructive models for FGMs is the power-law model, in which material 

properties of FGMs are supposed to change according to a power law about spatial coordinates. The 

coordinate system for FG nano beam having a length L, width b and thickness h, is shown in Fig. 1. 

The FG nanobeam is assumed to be combination of ceramic and metal and material properties of 

the FGM nanobeam, such as Young’s modulus (E), Poisson’s ratio (v), and the shear modulus (G), 

vary continuously through the nanobeam thickness according to a power-law form (Şimşek and 

Yurtçu 2013, Ahouel et al. 2015, Bensaid et al. 2017), which can be described by 

𝑃(𝑧) = 𝑃𝑚 + (𝑃𝑐 − 𝑃𝑚) (
1

2
+
𝑧

ℎ
)
𝑘

 (1) 

Here Pc and Pm are the corresponding material property at the top and bottom surfaces of the FG 

nanobeam. And k is the power law index which takes the value greater or equal to zero and 

determines the material distribution through the thickness of the beam. 

 

2.2 Kinematics relations for present model 
 

Based on the Novel One variable First-order Shear Deformation beam Theory (NOFSDT), the 

displacement field is presented as below (Malikan and Dastjerdi 2018, Malikan and Nguyen 2018, 

Malikan et al. 2019, Abdelbari et al. 2018). 
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𝑢1(𝑥, 𝑧) = 𝑢(𝑥) − 𝑧
𝑑𝑤𝑏(𝑥)

𝑑𝑥
 (2a) 

𝑢3(𝑥, 𝑧) = 𝑤𝑏(𝑥) +𝑊
′ (2b) 

By assuming that the material of FG beam obeys Hooke’s law, the stresses in the beam become 

{
𝜎𝑥𝑥
𝜎𝑥𝑧

} = {
𝐸(𝑧)𝜀𝑥𝑥
2𝐺(𝑧)𝛾𝑥𝑧

} (3) 

After having Eq. (3) from S-FSDT the stresses can be found and then by substituting Eq. (3) in 

the S-FSDT stress resultants, Eq. (4) will be derived as 

{
𝑀𝑥
𝑄𝑥
} = ∫ {

𝜎𝑥𝑧
𝜎𝑥𝑧

}
𝐴

𝑑𝐴 (4) 

Now applying the fourth equation of FSDT’s governing equations in order to calculate ws based 

on wb. 

𝑀𝑥
𝑑𝑥

− 𝑄𝑥 = 0 (5) 

By substituting Eq. (5) into the stress resultants of Eq. (4) we will get 

𝐸(𝑧)𝐼𝑐
𝑑3𝑤𝑏
𝑑𝑥3

− 𝐴𝐺(𝑧)
𝑑𝑤𝑠
𝑑𝑥

= 0 (6) 

Integrating from Eq. (6) based on x, simplifying and then passing over the integral constant terms, 

the shear deflection will now be obtained as follows. 

𝑤𝑠 = 𝑊
′ = 𝐵

𝑑2𝑤𝑏
𝑑𝑥2

 (7) 

The expression of the term B could be in both positive and negative sign that is explained 

𝐵 =
𝐸(𝑧)𝐼𝑐
𝐴𝐺

, 𝐺(𝑧) =
𝐸(𝑧)

2(1 + 𝜈)
  

in which G represents the shear modulus, E is the Young’s modulus, Ic (b × h3/12) denotes the 

moment of area of the cross-section, A is the cross-sectional area and ν is the Poisson’s ratio for 

isotropic nanobeams. Hereafter, the new beam theory will now be performed as 

at present: 𝑤𝑏 = 𝑤; {
𝑢1(𝑥, 𝑧)

𝑢3(𝑥, 𝑧)
} = {

𝑢(𝑥) − 𝑧
𝑑𝑤(𝑥)

𝑑𝑥

𝑤(𝑥) + 𝐵
𝑑2𝑤(𝑥)

𝑑𝑥2

} (8) 

Based on the total potential energy rule, the principal of the minimum total potential energy in 

static deflection and stability forms of the whole domain  is employed in the variational case, and 

can be use as follow (Şimşek 2012, Larbi Chaht et al. 2015) 

𝛿∏ = 𝛿(𝑈𝑒𝑥𝑡𝑖𝑛𝑡()) (9) 

in which Π is the total potential energy. δUint is the virtual variation of the strain energy; and δWext 

is the variation of work induced by external forces. The first variation of the strain energy is given 
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as 

𝛿𝑈∫ ∫ (𝜎𝑥𝛿𝜀𝑥

ℎ
2

−
ℎ
2

𝐿

0
𝑖𝑛𝑡

 (10) 

The associated nonzero strains in Eq. (10) of the current beam model are expressed as Malikan 

and Dastjerdi (2018). 

{
𝜀𝑥𝑥
𝛾𝑥𝑧
} =

{
 
 

 
 𝑑𝑢

𝑑𝑥
− 𝑧

𝑑2𝑤

𝑑𝑥3
+
1

2
(𝐵

𝑑3𝑤

𝑑𝑥3
+
𝑑𝑤

𝑑𝑥
)

𝐵
𝑑3𝑤

𝑑𝑥3

2

}
 
 

 
 

 (11) 

The variation of the work by the applied loads can be written as 

𝛿𝑊 = ∫ 𝑞𝛿𝑤𝑑𝑥 + 𝑁𝑥
𝑑𝑤

𝑑𝑤

𝑑𝛿𝑤

𝑑𝑥

𝐿

0

𝑑𝑥 (12) 

where (q) and (Nx) are the transverse and axial loads, respectively. 

Substituting the expressions for (δU) and (δV) from Eqs. (10) and (11) into Eq. (9) and making 

some mathematical manipulations, and isolating the coefficient of (δw), the following equation of 

motion of the novel proposed beam theory are obtained 

𝛿𝑤 = 0;
𝑑2𝑀𝑥
𝑑𝑥2

− 𝐵
𝑑3𝑄𝑥
𝑑𝑥3

− 𝑁𝑥 (𝐵
2
𝑑6𝑤

𝑑𝑥6
+ 2𝐵

𝑑4𝑤

𝑑𝑥4
+
𝑑2𝑤

𝑑𝑥2
) = 𝑞0 (13) 

in which (Nx), (Mx) and (Qx) are the nonlocal stress resultants, defined as 

{
𝑀𝑥
𝑄𝑥
} = ∫ {

𝜎𝑥𝑧
𝜎𝑥𝑧

}
𝐴

𝑑𝐴 (14) 

By substituting Eq. (11) into the Eq. (14) the stress resultants will be given as follows. 

{
𝑀𝑥
𝑄𝑥
} =

{
 

 −𝐸𝐼𝑐
𝑑2𝑤

𝑑𝑥2

𝐴𝐺𝐵
𝑑3𝑤

𝑑𝑥3 }
 

 

 (15) 

Contrary to the classical (local) theory, in the nonlocal elasticity theory of Eringen (1972, 1983), 

the stress at a reference point x is considered to be a functional of the strain field at every point in 

the body. For example, in the non-local elasticity, the constitutive equation of strain-driven nonlocal 

elasticity is expressed as elasticity Eringen (1972, 1983). 

(1 − 𝜇𝛻2)𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙; 𝜇(𝑛𝑚
2) = (𝑒0𝑎)

2, 𝛻2 =
𝑑2

𝑑𝑥2
 (16) 

μ = (e0a)2 is a nonlocal parameter revealing the nanoscale effect on the response of nanobeams, 

e0 is a constant appropriate to each material and a is an internal characteristic length. In general, a 

conservative estimate of the nonlocal parameter is e0a < 2.0 nm for a single wall carbon nanotube 

(Wang 2005, Heireche et al. 2008a, b, Tounsi et al. 2013b, c, Bensaid 2017). 
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The material properties of the FG nano beam are supposed to be graded in the thickness direction, 

and are expressed according to a power law model about spatial coordinates as Bensaid and 

Bekhadda (2018), Zemri et al. (2015) 

𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (
1

2
+
𝑧

ℎ
)
𝑘

 (17) 

where Ec and Em are the Young’s modulus corresponding of the ceramic and metal, respectively, and 

k is the power-law exponent which determines the material distribution through the thickness of the 

beam. Due to unimportant difference of the Poisson’s ratio, this variation is supposed to be constant 

along the thickness (ν(z) = ν). Starting of Eq. (17), when k → ∞, the FG nanobeam reduces to a pure 

metal one and for case k = 0, the nanobeam looks as pure ceramic. 

Now, by substituting Eqs. (15)-(16) into general Eq. (13), and also doing some mathematical 

manipulation, lead to the static and stability equations of the One Variable First-order Shear 

Deformation Theory (OVFSDT) as 

𝛿𝑤 = 0: 𝐸𝐼𝑐
𝑑𝑤4

𝑑𝑥4
+ 𝐵2𝐴𝐺

𝑑6𝑤

𝑑𝑥6
− 𝑁0 (𝐵

2
𝑑6𝑤

𝑑𝑥6
+ 2𝐵

𝑑4𝑤

𝑑𝑥4
+
𝑑2𝑤

𝑑𝑥2
) 

               + 𝜇𝑁0 (𝐵
2
𝑑8𝑤

𝑑𝑥8
+ 2𝐵

𝑑6𝑤

𝑑𝑥6
+
𝑑4𝑤

𝑑𝑥4
) = 0 

(18) 

In addition from the paper of Bouremana et al. (2013), the S-FSDT equations could be obtained 

as follows. 

𝛿𝑤𝑏 = 0: 𝐸𝐼𝑐
𝑑4𝑤𝑏
𝑑𝑥4

−𝑁0 (
𝑑2𝑤𝑏
𝑑𝑥2

+
𝑑2𝑤𝑠
𝑑𝑥2

) + 𝜇𝑁0 (
𝑑4𝑤𝑏
𝑑𝑥4

+
𝑑4𝑤𝑠
𝑑𝑥4

) = 0 (19a) 

𝛿𝑤𝑠 = 0: 𝐴𝐺
𝑑2𝑤𝑠
𝑑𝑥2

− 𝑁0 (
𝑑2𝑤𝑏
𝑑𝑥2

+
𝑑2𝑤𝑠
𝑑𝑥2

) + 𝜇𝑁0 (
𝑑4𝑤𝑏
𝑑𝑥4

+
𝑑4𝑤𝑠
𝑑𝑥4

) = 0 (19b) 

On the other hand, the conventional FSDT equations could be obtained as follows (Simsek and 

Yurtçu 2013) 

𝛿𝑤 = 0: 𝑘𝑠𝐴𝐺 (
𝑑2𝑤

𝑑𝑥2
−
𝑑𝜑

𝑑𝑥
) − 𝑁0

𝑑2𝑤

𝑑𝑥2
+ 𝜇𝑁0

𝑑4𝑤

𝑑𝑥4
 (20a) 

𝛿𝜑 = 0: 𝐸𝐼𝑐
𝑑2𝜑

𝑑𝑥2
+ 𝑘𝑠𝐴𝐺 (

𝑑𝑤

𝑑𝑥
− 𝜑) = 0 (20b) 

Furthermore, for CBT the bending stability equation is obtained in the following form. 

𝛿𝑤 = 0: 𝐸𝐼𝑐
𝑑4𝑤

𝑑𝑥4
− 𝑁0

𝑑2𝑤

𝑑𝑥2
+ 𝜇𝑁0

𝑑4𝑤

𝑑𝑥4
= 0 (21) 

 

 
3. Closed-form solution of simply supported FG nanobeam 
 

This part is concerned to propose analytical solutions for solving the above nonlocal governing 

equations of motion, in the case of bending and buckling problems. The Navier solution technique 
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is used to determine the analytical solutions for a simply supported FG nanobeam. The solution is 

assumed to be of the form 

{
𝑤
𝜑
} = ∑ {

𝑊𝑛 sin( 𝛼𝑥)𝑒
𝑖𝜔𝑡

𝜑𝑛 sin( 𝛼𝑥)𝑒
𝑖𝜔𝑡
}

∞

𝑚=1

 (22) 

in which Un, Wn and φn are arbitrary parameters to be determined, ω is the eigenfrequency associated 

with nth eigenmode and α = nπ/L. The transverse load q is also expanded in the Fourier sine series 

as 

𝑞(𝑥) = ∑𝑄𝑛 sin(𝛼𝑥) 

∞

𝑛=1

 

𝑄𝑛 =
2

𝐿
∫ 𝑞(𝑥) sin(𝛼𝑥) 𝑑𝑥
𝐿

0
   

(23) 

and for uniform load Qn is expressed as                     

𝑄𝑛 =
4𝑞0
𝑛𝜋

, 𝑛 = 1,3,5. . .. (24) 

Substituting the expansions of w, φ and q from Eqs. (27) and (28) into Eqs. (26), (25), (24), (23) 

the analytical solutions can be obtained from the following equations. 

• OFSDT 

𝑊𝑛 =
𝜆𝑞

𝐸𝐼𝑐𝛼
4 − 𝐵𝐴𝐺𝛼6

 (25a) 

𝑃𝑐𝑟 =
𝐸𝐼𝑐𝛼

4 −
(𝐸𝐼𝑐)

2

𝐴𝐺
𝛼6

(
𝐸𝐼𝑐
𝐴𝐺
)
2

𝛼6 −
2𝐸𝐼𝑐
𝐴𝐺

𝛼4 + 𝛼2 + 𝜇 ((
𝐸𝐼𝑐
𝐴𝐺
)
2

𝛼8 −
2𝐸𝐼𝑐
𝐴𝐺

𝛼6 + 𝛼4)

 (25b) 

• EBT 

𝑊𝑛 =
𝜆𝑞

𝛼4𝐸𝐼𝑐
 (26a) 

𝑃𝑐𝑟 =
𝐸𝐼𝑐𝛼

4

𝛼2 + 𝜇𝛼4
 (26b) 

• SFSDT 

[
𝐸𝐼𝑐𝛼

2 + 𝑃𝑐𝑟𝛼
2 + 𝜇𝑃𝑐𝑟𝛼

4 𝑃𝑐𝑟𝛼
2 + 𝜇𝑃𝑐𝑟𝛼

4

𝑃𝑐𝑟𝛼
2 + 𝜇𝑃𝑐𝑟𝛼

4 −𝐴𝐺𝛼2 + 𝑃𝑐𝑟𝛼
2 + 𝜇𝑃𝑐𝑟𝛼

4] {
𝑤𝑏
𝑤𝑠
} = {

𝜆𝑞
𝜆𝑞
} (27) 

• FSDT 

[
−𝑘𝑠𝐴𝐺𝛼

2 + 𝑃𝑐𝑟𝛼
2 + 𝜇𝑃𝑐𝑟𝛼

4 𝑘𝑠𝐴𝐺𝛼

𝑘𝑠𝐴𝐺𝛼 −𝐸𝐼𝑐𝛼
2 − 𝑘𝑠𝐴𝐺

] {
𝑤
𝜑} = {

𝜆𝑞
0
} (28) 

By making the determinant of coefficients of the above systems of Eqs. (27) and (28) equal to  
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Table 1 Nondimensional static deflection w̅ of the FG nanobeam 

µ OFSDT SFDT TBT RBT OFSDT SFDT TBT RBT 

p = 0 p = 0.3 

0 6.4609 6.4609 6.4867 6.4865 3.8178 3.8178 3.9090 3.9102 

0.5 5.8252 5.8252 5.8487 5.8485 3.4421 3.4421 3.5245 3.5254 

1 5.4438 5.4438 5.4659 5.4659 3.2167 3.2167 3.2938 3.2946 

1.5 5.3166 5.3166 5.3383 5.3381 3.1416 3.1416 3.2169 3.2178 

p = 1  p = 10 

0 2.5843 2.5843 2.9401 2.9401 1.7334 1.7334 1.9190 1.9190 

0.5 2.3300 2.3300 2.6508 2.6508 1.5628 1.5628 1.7310 1.7301 

1 2.1775 2.1775 2.4772 2.4772 1.4605 1.4605 1.6176 1.6169 

1.5 2.1216 2.1216 2.4194 2.4194 1.4264 1.4264 1.5799 1.5790 

TBT: Şimşek and Yurtçu (2013); RBT: Larbi Chat et al. (2015) 

 
Table 2 Nondimensional critical buckling load (N̅) of the FG nanobeam 

µ OFSDT SFDT TBT RBT OFSDT SFDT TBT RBT 

p = 0 p = 0.3 

0 2.5213 2.0631 1.9685 1.9682 3.4915 3.4915 3.2667 3.2655 

0.5 2.0631 2.2948 2.1895 2.1892 3.8835 3.8835 3.6335 3.6322 

1 2.2948 2.4606 2.3477 2.3473 4.1640 4.1640 3.8959 3.8945 

1.5 2.4606 2.5213 2.4056 2.4052 4.2668 4.2868 3.9921 3.9906 

p = 1  p = 10 

0 5.1578 5.1578 4.3437 4.3440 7.6899 7.6899 6.6518 6.6558 

0.5 5.7370 5.7370 4.8315 4.8317 8.5534 8.5534 7.3989 7.4031 

1 6.1515 6.1515 5.1805 5.1808 9.1713 9.1713 7.9332 7.9379 

1.5 6.3032 6.3032 5.3084 5.3086 9.3976 9.3976 8.1338 8.1397 

TBT: Şimşek and Yurtçu (2013); RBT: Larbi Chat et al. (2015) 
 

 

zero, by setting the obtained polynomial to zero, we can find the critical buckling load of S-FSDT 

and FSDT. 

 

 
4. Results and discussion 
 

This section is concerned to check the accuracy and reliability of this novel approach for the size-

dependent static and stability responses of FG nanobeams based nonlocal on a one variable FSDT 

(OVFSDT) beam model. Computations have been implemented for the following material and beam 

properties: E1 = 1 TPa, E2 = 0.25 TPa, v1 = v2 = 0.3. The shear correction factor is taken as ks = 5/6 

for Timoshenko beam theory (Şimşek and Yurtçu 2013, Larbi Chaht et al. 2015). For convenience, 

the following dimensionless amounts are used in presenting the numerical results in graphical and 

tabular forms. 
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Fig. 2 Effect of the length to thickness ratio on dimensionless deflection for uniform load for k = 1,  

e0a = 1 nm 

 

 

Fig. 3 Effect of the length to thickness ratio on dimensionless buckling load for k = 1, e0a = 1 nm 

 

 

𝑤 = 100𝑤
𝐸1𝐼

𝑞0𝐿
4      for uniform load (29) 

𝑃𝑐𝑟 =
𝑃𝐿2

𝐸1𝐼
 (30) 

For the validation purpose, the non-dimensional maximum deflection and buckling loads of the 

simply supported FG nanobeam with various nonlocal parameters, length to thickness ratios and 

power-law exponents are compared with the results reported by Şimşek and Yurtçu (2013) and Larbi 

Chat et al. (2015) without stretching effect which have been formulated by analytical models for FG 

Timoshenko and refined higher order nanobeams, respectively. One can see from Tables 1 and 2 

that, there is a very good agreement between the obtained results and predictions from the literature 

confirms the high correctness of the proposed theory. The minor difference between the results 

obtained by the present model and the other ones is due to that, there is no shear correction factor 

and the present model generates just one variable governing equation of motion. 

The variations of the nondimensional maximum deflections 𝑤of the simply supported FG 

nanobeams with various values of the gradient index (k = 0, 0.3, 1, 10), nonlocal parameters (μ = 0, 

0.5, 1, 1.5, 2 (nm)2) and two different values of slenderness ratios (L/h = 10, 30) are exhibited in 

Table 1 based on the novel OFSDT. It is mentioned that when e0a vanish corresponds to local beam 

theory. It can be concluded that the results of the present beam theory based on one variable shear  
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Fig. 4 Effect of nonlocal parameter on dimensionless deflection under uniform load for k = 1 

 

 

Fig. 5 Effect of nonlocal parameter on nondimensional buckling load for k = 1 

 

 

deformation theory match well with those predicted by TBT (Şimşek and Yurtçu 2013) and Larbi 

Chat et al. (2015) with (εz = 0) for all values of thickness ratio L/h, power law index k and nonlocal 

parameter e0a and thus confirms the proposed refined model. A variation of the material distribution 

parameter k leads to a significant change in the maximum deflection. On other hand, one can also 

say that an increase in the nonlocal parameter gives rise to an increase in the maximum deflection, 

which highlights the significance of the nonlocal effect. 

Table 2 displays the variation of the nondimensional critical buckling loads for diverse values of 

thickness ratio L/h, gradient indexes k and nonlocal parameter e0a, based on the new refined model 

for FG nanobeam. As can be noted also, that the obtained results are in good concordance with the 

results provided in the literature those of Şimşek and Yurtçu (2013) and Larbi Chat et al. (2015) 

without stretching effect again. It is seen, that the critical buckling load decreases as the nonlocal 

parameter rises. This emphasizes the significance of the nonlocal effect on the buckling response of 

beams, because the nonlocal parameter softens the nanobeam. By varying the material distribution 

parameter k leads to a decrement in the buckling load, because diminishing in ceramics phase 

constituent, and hence, stiffness of the beam.  

Figs. 2 and 3 display the variation of static and buckling responses of FG nanobeam versus 

length to thickness ratio for two models of shear deformation namely OFSDT and SFDT. The 

illustrated are obtained for local and nonlocal are given by fixing the following values at e0a = 0, 

e0a = 1 nm and k = 1 for material distribution profile. We can see from these curves that the proposed 

OFSDT is in good in good agreement with the SFDT which highlights the effectiveness of the  
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Fig. 6 Variation of the nondimensional deflection of S-S FGM nanobeam with material graduation and 

for different scale parameter rises (L/h = 10) 

 

 

Fig. 7 Variation of the nondimensional buckling load of S-S FGM nanobeam with material graduation 

and for different scale parameter rises (L/h = 10) 

 

 

proposed approach. Furthermore, it can be observed from the results of the figures as slenderness 

ratios increase, the deflection decreases and the non-dimensional buckling load increase, these 

influences are more important for lower values of thickness ratio (L/h), and this impact is too small 

for long FG nanobeams. In addition, it is noted from the obtained values of non-dimensional 

deflections obtained by the nonlocal model are greater to those determined by the local (classical) 

continuum theory, whereas for the nonlocal buckling load, the results are smaller in magnitude than 

the local buckling load due to stiffness softening phenomena induced by the small scale parameter. 

Figs. 4 and 5 illustrate the influence of the nonlocal scale parameter on non-dimensional static 

deflection and buckling responses of FG nanobeam based on the new proposed nonlocal OFSD 

beam model for various values of geometrical report L/h. The material gradation profile is presumed 

to be unvarying (i.e., k = 1). These figures show that a rise in nonlocal parameter leads to an 

increment in transverse displacement and a decrement in the critical buckling load, which indicates 
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the notability of the nonlocal effect. In addition, the responses vary in a linear way with the nonlocal 

parameter and take large values especially at relatively higher aspect ratios. 

The maximum deflection and buckling load as functions of power law exponents with varying 

power law exponent are showed in Figs. 6-7 for fixed length to thickness ratio (L/h = 10). It is seen 

from these figures that the dimensionless deflection of FG nanobeam decreases and the buckling 

load increase with the raise of power exponent. This change takes a high rate for 0 < k < 5 and then 

keeps to turn down with a low rate for 5< k < 15, and it can be conclude that for k > 5 material 

distribution profile has no sensible effect on the both static and stability of FG nanobeam. Also, it is 

observed that a variation of nonlocal parameter (μ = 0, 0.5, 1, 1.5, 2) yields to an increase and 

decreases into nondimensional deflection and buckling loads, respectively. Which highlight the 

impact of nonlocal parameter on both results, due to the softening effect. 

 

 

5. Conclusions 

 

This article has been devoted to study the static bending and stability of functionally graded 

nanobeams subjected to the both of transverse and axial compressive loads, based on a new first 

order beam approach. The highlight of this model is that, in addition to including the transverse 

shear strain effect, the displacement field is modeled with only one unknown, which is even less 

than the other shear deformation theories where we find usually three or more variables. Material 

distribution characteristics of FG nanobeam are supposed to change gradually along the thickness 

according to the power-law type. By employing the principal of the minimum total potential energy 

and the nonlocal differential constitutive relation of Eringen, the governing equations of motion are 

extracted and Navier’s type solution procedure is used to solve the obtained governing equations. 

The obtained results based on the present OVFSDT are checked and validated with those predicted 

by the prior works to confirm the accuracy of the present model. At last, a comprehensive parametric 

study was done, and the numerical results show the significant influences of several parameters such 

as, nonlocal parameter, material property gradient exponent and length to thickness ratio on 

deflection and critical buckling loads of FG nanobeams. 
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