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Abstract.  In this paper, the porosities effect on the dynamic analysis of the simply supported FGM sandwich plates 
is studied using a new refined shear deformation theory taking into account transverse shear deformation effects. This 
porosity may possibly occur inside the Functionally Graded Materials (FGMs) during their fabrication. Two common 
types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous 
core and the sandwich with the homogeneous face sheet and the FGM core. The results are presented for two 
constituent metal-ceramic functionally graded plates that have a power law through-the-thickness variation of the 
volume fractions of the constituents. The results obtained reveal that the dynamic response is significantly influenced 
by the volume fraction of the porosity, power law index, the thickness-side ratios and the thickness of the functionally 
graded layer. 
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1. Introduction 
 

Functionally Graded Materials (FGMs) are microscopically inhomogeneous composites that are 

usually made from a mixture of metals and ceramics. FGMs are regarded as one of the most 

promising candidates for future advanced composites in many engineering sectors such as the 

aerospace, aircraft, automobile and defense industries, and most recently the electronics and 

biomedical sectors (Ichikawa 2000). 

The term FGMs was originated in the mid-1980s by a group of scientists in Japan; where this 

new material concept was proposed to increase adhesion and minimize the thermal stresses. Since 

then, an effort to develop high-resistant materials using FGMs had been continued. FGMs have the 

properties that could vary in several suitable directions (Koizumi 1997, Benferhat et al. 2016b). The 

mechanical properties of these materials are often being represented in the form of a series (Shi and 

Chen 2004) and power-law index variations (Hassaine et al. 2016a, Abdelhak et al. 2016b, Adim 

and Hassaine 2016, Daouadji and Benferhat 2016, Abdedezak et al. 2016b, 2018, Adim et al. 2018, 

Benhenni et al. 2019a, b, Hadj et al. 2019, Hassaine Daouadji 2013, Belkacem 2016a). In these 

graded materials, there is a smooth and continuous variation of material properties across the 

thickness. This leads to no stress concentration and better fatigue life. 

Sandwich structures are often found in aerospace application such as in skin of wings, vertical  

 

Corresponding author, Professor, E-mail: daouadjitahar@gmail.com 



 

 

 

 

 

 

Rabia Benferhat, Tahar Hassaine Daouadji and Rabahi Abderezak 

 

Fig. 1 The geometry of FGM sandwich plate 

 

 

fin torque box, aileron, spoilers, etc. The advantages of these structures are that it provides high 

specific stiffness and strength for a low-weight consideration. To maintain minimum weight for a 

given thermo-mechanical loading condition, FGM could be incorporated in the sandwich 

construction (Pradhan and Murmu 2009, Rabia et al. 2016b, 2018b, Benhenni et al. 2018, Belkacem 

et al. 2016b, Hassaine Daouadji 2016c, Rabahi 2019, Adim 2016). However, the literature on the 

analysis of the FGMs sandwich plate is very few. Zenkour and Sobhy (2010) studied the thermal 

buckling of functionally graded material sandwich plates. The thermal loads are assumed to be 

uniform, linear and non-linear distribution through-the-thickness. Wang and Shen (2011) carried out 

nonlinear vibration, nonlinear bending and post-buckling analyses for a sandwich plate with FGM 

face sheets resting on an elastic foundation in thermal environments. Natarajan and Manickam 

(2012) carried out the bending and the free flexural vibration behavior of sandwich FGM plates 

using an accurate theory which take accounts for the realistic variation of the displacements through 

the thickness. 

However, in FGM fabrication, micro voids or porosities can occur within the materials during 

the process of sintering. This is because of the large difference in solidification temperatures between 

material constituents (Zhu et al. 2000, Daouadji and Adim 2016a, b, Rabahi et al. 2016a, 2019). 

Wattanasakulpong and Ungbhakorn (2014) also gave the discussion on porosities happening inside 

FGM samples fabricated by a multi-step sequential infiltration technique. Therefore, it is important 

to take in to account the porosity effect when designing FGM structures subjected to dynamic 

loadings. Recently, Wattanasakulpong and Ungbhakorn (2014) studied linear and nonlinear 

vibration problems of elastically and restrained FG beams having porosities.  

 

 

2. Geometric configuration and material properties 
 

2.1 Geometric configuration 
 

Fig. 1 shows rectangular FGM sandwich plate with the uniform thickness composed of three  
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Fig. 2 The material variation along the thickness of the FGM sandwich plate 

 

 

microscopically heterogeneous layers under consideration and the Cartesian coordinate system (x, 

y, z) used in the present study. The modified rule of mixture covering porosity phases is used to 

describe and approximate material properties of the FG sandwich plates (Fig. 2). 

  

2.2 Numerical simulation procedure 
 

Two different types of functionally graded plates are studied (Hadji et al. 2015, Hassaine 

Daouadji et al. 2016b, Rabahi et al. 2018a). 

Type A: Power-law FGM face sheet and homogeneous core 

𝑉(1) = (
𝑧 − ℎ1

ℎ2 − ℎ1
)𝑘 , 𝑧 ∈ [ℎ1, ℎ2] 

𝑉(2) = 1, 𝑧 ∈ [ℎ2, ℎ3] 

𝑉(3) = (
𝑧 − ℎ4

ℎ3 − ℎ4
)𝑘 , 𝑧 ∈ [ℎ3, ℎ4] 

(1) 

Type B: Homogeneous face sheet and power-law FGM core 

𝑉(1) = 0, 𝑧 ∈ [ℎ1, ℎ2] 

𝑉(2) = (
𝑧 − ℎ2

ℎ3 − ℎ2
)𝑘 , 𝑧 ∈ [ℎ2, ℎ3] 

𝑉(3) = 1, 𝑧 ∈ [ℎ3, ℎ4] 

(2) 

where V(n) (n = 1, 2, 3) denote the volume fraction function of layer n and k is the volume fraction 

index (0 ≤ k ≤ ∞), which dictates the material variation profile through the thickness. 

 

2.3 Effective material properties FGM sandwich plates 
 

A FG plate made from a mixture of two material phases, for example, a metal and a ceramic. The 

material properties of FG plates are assumed to vary continuously through the thickness of the plate. 

In this investigation, the imperfect plate is assumed to have porosities spreading within the thickness 

due to defect during production. Consider an imperfect FGM with a porosity volume fraction, α (α 

<< 1), distributed evenly among the metal and ceramic, the modified rule of mixture proposed by 

Wattanasakulpong and Ungbhakorn (2014) is used as 
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𝑃 = 𝑃𝑚(𝑉𝑚 −
𝛼

2
) + 𝑃𝑐(𝑉𝑐 −

𝛼

2
) (3) 

Now, the total volume fraction of the metal and ceramic is: Vm + Vc = 1, and the power law of 

volume fraction of the ceramic is described as 

𝑉𝑐 = (
𝑧

ℎ
+
1

2
)𝑘 (4) 

Hence, all properties of the imperfect FGM can be written as 

𝑃 = (𝑃𝑐 − 𝑃𝑚)(
𝑧

ℎ
+
1

2
)𝑘 + 𝑃𝑚 − (𝑃𝑐 + 𝑃𝑚)

𝛼

2
 (5) 

It is noted that the positive real number k (0 ≤ k ≤ ∞), is the power law or volume fraction index, 

and z is the distance from the mid-plane of the FG plate. The FG plate becomes a fully ceramic plate 

when k is set to zero and fully metal for large value of k. Thus, the Young’s modulus (E) and material 

density (ρ) equations of the imperfect FGM beam can be expressed as (Atmane et al. 2015, Hadji et 

al. 2015, Hassaine Daouadji 2017, Daouadji et al. 2008) 

𝐸(𝑧) = (𝐸𝑐 − 𝐸𝑚)(
𝑧

ℎ
+
1

2
)𝑘 + 𝐸𝑚 − (𝐸𝑐 + 𝐸𝑚)

𝛼

2
 

𝜌(𝑧) = (𝜌𝑐 − 𝜌𝑚)(
𝑧

ℎ
+
1

2
)𝑘 + 𝜌𝑚 − (𝜌𝑐 + 𝜌𝑚)

𝛼

2
 

(6) 

However, Poisson’s ratio (ν) is assumed to be constant. The material properties of a perfect FG 

plate can be obtained when α is set to zero. 

 

 
3. Mathematical formulation 
 

The displacements of a material point located at (x, y, z) in the plate may be written as follows 

{
 
 

 
 𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧

𝜕𝑤𝑏
𝜕𝑥

− (𝑧 − sin(
𝜋𝑧

ℎ
))
𝜕𝑤𝑠
𝜕𝑥

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− (𝑧 − sin(
𝜋𝑧

ℎ
))
𝜕𝑤𝑠
𝜕𝑦

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦)

 (7) 

where u0 and v0 are the mid-plane displacements of the plate in the x and y direction, respectively; 

wb and ws are the bending and shear components of transverse displacement, respectively, while f(z) 

represents shape functions determining the distribution of the transverse shear strains and stresses 

along the thickness and is given as (Benferhat et al. 2016a, Rabia et al. 2016c) 

𝑓(𝑧) = 𝑧 − sin(
𝜋𝑧

ℎ
) (8) 

The strain components are related to the displacements given in Eq. (7) can be expressed as 

𝜀𝑥 = 𝜀𝑥
0 + 𝑧 𝑘𝑥

𝑏 + (𝑧 − sin(
𝜋𝑧

ℎ
))𝑘𝑥

𝑠 

𝜀𝑦 = 𝜀𝑦
0 + 𝑧 𝑘𝑦

𝑏 + (𝑧 − sin(
𝜋𝑧

ℎ
)) 𝑘𝑦

𝑠  

(9) 

 

28



 

 

 

 

 

 

Effect of porosity on fundamental frequencies of FGM sandwich plates 

𝛾𝑥𝑦 = 𝛾𝑥𝑦
0 + 𝑧 𝑘𝑥𝑦

𝑏 + (𝑧 − sin(
𝜋𝑧

ℎ
)) 𝑘𝑥𝑦

𝑠  

𝛾𝑦𝑧 = 𝑔(𝑧) 𝛾𝑦𝑧
𝑠 = (1 −

𝑑(𝑧 − sin(
𝜋𝑧
ℎ
))

𝑑𝑧
) 𝛾𝑦𝑧

𝑠  

𝛾𝑥𝑧 = 𝑔(𝑧) 𝛾𝑥𝑧
𝑠 = (1 −

𝑑(𝑧 − sin(
𝜋𝑧
ℎ
))

𝑑𝑧
) 𝛾𝑥𝑧

𝑠  

𝜀𝑧 = 0 

(9) 

where 

𝜀𝑥
0 =

𝜕𝑢0
𝜕𝑥

,     𝑘𝑥
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑥2

,    𝑘𝑥
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑥2

 

𝜀𝑦
0 =

𝜕𝑣0
𝜕𝑦

,    𝑘𝑦
𝑏 = −

𝜕2𝑤𝑏
𝜕𝑦2

, 𝑘𝑦
𝑠 = −

𝜕2𝑤𝑠
𝜕𝑦2

, 

𝛾𝑥𝑦
0 =

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥

,   𝑘𝑥𝑦
𝑏 = −2

𝜕2𝑤𝑏
𝜕𝑥𝜕𝑦

,   𝑘𝑥𝑦
𝑠 = −2

𝜕2𝑤𝑠
𝜕𝑥𝜕𝑦

,   𝛾𝑦𝑧
𝑠 =

𝜕𝑤𝑠
𝜕𝑦

 

𝛾𝑥𝑧
𝑠 =

𝜕𝑤𝑠
𝜕𝑥

,                    𝑓′(𝑧) =
𝑑𝑓(𝑧)

𝑑𝑧
=
𝑑(𝑧 − sin(

𝜋𝑧
ℎ
))

𝑑𝑧
 

𝑔(𝑧) = 1 − 𝑓′(𝑧) = 1 −
𝑑(𝑧 − sin(

𝜋𝑧
ℎ
))

𝑑𝑧
 

(10) 

The stress-strain relationships accounting for transverse shear deformation in the plate coordinate 

can be written as 

{

𝜎𝑥
𝜎𝑦
𝜏𝑥𝑦

} = [

𝑄11 𝑄12 0
𝑄12 𝑄22 0
0 0 𝑄66

] {

𝜀𝑥
𝜀𝑦
𝛾𝑥𝑦

} 

{
𝜏𝑦𝑧
𝜏𝑧𝑥
} = [

𝑄44 0
0 𝑄55

] {
𝛾𝑦𝑧
𝛾𝑧𝑥
} 

(11) 

where (σx, σy, τxy, τxz, τyz) and (εx, εx, γxy, γxz, γyz) are the stress and strain components, respectively. 

Stiffness coefficients, Qij can be expressed as 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1 − 𝜈2
, 𝑄12 =

𝜈𝐸(𝑧)

1 − 𝜈2
, 𝑄44 = 𝑄55 = 𝑄66 =

𝐸(𝑧)

2(1 + 𝜈)
 (12) 

The total potential energy of the FGM sandwich plate may be written as 

𝑈𝑒 =
1

2
∫(𝜎𝑥𝜀𝑥 + 𝜎𝑦𝜀𝑦 + 𝜏𝑥𝑦𝛾𝑥𝑦 + 𝜏𝑦𝑧𝛾𝑦𝑧 + 𝜏𝑧𝑥𝛾𝑧𝑥)𝑑𝑉
𝑉

 (13) 

The principle of virtual work for the present problem may be expressed as follows 

𝑈𝑒 =
1

2
∫(𝑁𝑥𝜀𝑥

0 +𝑁𝑦𝜀𝑦
0 +𝑁𝑥𝑦𝜀𝑥𝑦

0 +𝑀𝑥
𝑏𝑘𝑥

𝑏 +𝑀𝑦
𝑏𝑘𝑦

𝑏 +𝑀𝑥𝑦
𝑏 𝑘𝑥𝑦

𝑏 +𝑀𝑥
𝑠𝑘𝑥

𝑠 +𝑀𝑦
𝑠𝑘𝑦

𝑠

𝑉

 

          + 𝑀𝑥𝑦
𝑠 𝑘𝑥𝑦

𝑠 + 𝑆𝑦𝑧
𝑠 𝛾𝑦𝑧

𝑠 + 𝑆𝑥𝑧
𝑠 𝛾𝑥𝑧

𝑠 )𝑑𝑥𝑑𝑦 

(14) 

where 
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{

𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦 ,

𝑀𝑥
𝑏 , 𝑀𝑦

𝑏, 𝑀𝑥𝑦
𝑏 ,

𝑀𝑥
𝑠, 𝑀𝑦

𝑠 , 𝑀𝑥𝑦
𝑠 ,

} = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜏𝑥𝑦)
+
ℎ
2

−
ℎ
2

{
1
𝑧
𝑓(𝑧)

} 𝑑𝑧 (15) 

(𝑆𝑥𝑧
𝑠 , 𝑆𝑦𝑧

𝑠 ) = ∫ (𝜏𝑥𝑧, 𝜏𝑦𝑧)
+
ℎ
2

−
ℎ
2

𝑔(𝑧)𝑑𝑧 (16) 

The kinetic energy of the plate can be written as 

𝑇 =
1

2∫ 𝜌(𝑈̈2 + 𝑉̈2 + 𝑊̈2)𝑑𝑉
𝑣

=
1

2∫ 𝐼0(𝑢̈
2 + 𝑣̈2 + (𝑤̈𝑏 + 𝑤̈𝑠)

2)𝑑𝑥𝑑𝑦
𝐴

 

        + 1/2∫(𝐼2((
𝜕𝑤̈𝑏
𝜕𝑥

)2 + (
𝜕𝑤̈𝑏
𝜕𝑦

)2

𝐴

) +
𝐼2
84
((
𝜕𝑤̈𝑠
𝜕𝑥

)2 + (
𝜕𝑤̈𝑠
𝜕𝑦

)2))𝑑𝑥𝑑𝑦 

(17) 

where ρ is the mass of density of the FG plate and Ii (i = 0, 2) are the inertias defined by 

(𝐼0, 𝐼2) = ∑∫ (1, 𝑧2)𝜌𝑑𝑧
ℎ𝑛+1

ℎ𝑛

3

𝑛=1

 (18) 

Hamilton’s principle (Delale and Erdogan 1983) is used to derive the equations of motion 

appropriate to the displacement field and the constitutive equation. The principle can be stated in an 

analytical form as 

0 = ∫ 𝛿(𝑈𝑒 − 𝑇)𝑑𝑡
𝑡

0

 (19) 

where δ indicates a variation with respect to x and y. 

By substituting Eqs. (14) and (17) into Eq. (19) and integrating the equation by parts and 

collecting the coefficients of δu, δv, δwb and δws, the equations of motion for the FG sandwich plate 

are obtained as follows 

{
 
 
 
 
 

 
 
 
 
 𝛿𝑢:

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 𝐼0𝑢

..

𝛿𝑣:
𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 𝐼0𝑣

..

𝛿𝑤𝑏:
𝜕2𝑀𝑥

𝑏

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑏

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑏

𝜕𝑦2
= 𝐼0(𝑤

..

𝑏 +𝑤
..

𝑠) − 𝐼2(
𝜕2𝑤

..

𝑏

𝜕𝑥2
+
𝜕2𝑤

..

𝑏

𝜕𝑦2
)

𝛿𝑤𝑠:
𝜕2𝑀𝑥

𝑠

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑠

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑠

𝜕𝑦2
+
𝜕𝑆𝑥𝑧

𝑠

𝜕𝑥
+
𝜕𝑆𝑦𝑧

𝑠

𝜕𝑦
= 𝐼0(𝑤

..

𝑏 +𝑤
..

𝑠) −
𝐼2
84
(
𝜕2𝑤

..

𝑏

𝜕𝑥2
+
𝜕2𝑤

..

𝑏

𝜕𝑦2
)

 (20) 

Using Eq. (11) in Eq. (15), the stress resultants of a sandwich plate made up of three layers can 

be related to the total strains by 

{
𝑁
𝑀𝑏

𝑀𝑠
} = [

𝐴 𝐵 𝐵𝑠

𝐴 𝐷 𝐷𝑠

𝐵𝑠 𝐷𝑠 𝐻𝑠
] {
𝜀
𝑘𝑏

𝑘𝑠
} , 𝑆 = 𝐴𝑠𝛾 (21) 

30



 

 

 

 

 

 

Effect of porosity on fundamental frequencies of FGM sandwich plates 

 

Table 1 Fundamental frequency results for FGM sandwich plate with homogeneous hardcore 

h/b k Theory 
 

α 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1 

0.01 

0 

Li et al. (2008) α =0 1.88829 1.88829 1.88829 1.88829 1.88829 1.88829 

Present 

α = 0 1.88825 1 .88825 1.88825 1.88825 1.88825 1.88825 

α = 0.1 1.97464 1.95642 1.94455 1.93869 1.93001 1.90463 

α = 0.2 2.07409 2.03256 2.00621 1.99341 1.97467 1.92145 

5 

Li et al. (2008) α = 0 0.96563 0.99903 1.06309 1.13020 1.19699 1.56988 

Present 

α = 0 0.96564 0.99904 1.06309 1.13019 1.19697 1.56985 

α = 0.1 1.02506 1.04426 1.10114 1.16570 1.22718 1.58416 

α = 0.2 1.09700 1.09624 1.14361 1.20478 1.25981 1.59888 

10 

Li et al. (2008) α = 0 0.95042 0.95934 1.01237 1.08065 1.14408 1.54164 

Present 

α = 0 0.95045 0.95937 1.01236 1.08068 1.14405 1.54162 

α = 0.1 1.01080 1.00382 1.04928 1.11516 1.17331 1.55362 

α = 0.2 1.08435 1.05509 1.09055 1.15320 1.20494 1.56808 

0.1 

0 

Li et al. (2008) α = 0 1.82682 1.82682 1.82682 1.82682 1.82682 1.82682 

Present 

α = 0 1.82453 1.82453 1.82453 1.83453 1.82453 1.82453 

α = 0.1 1.90493 1.88882 1.87815 1.87259 1.86481 1.84065 

α = 0.2 1.99724 1.96058 1.93690 1.92474 1.90793 1.85722 

5 

Li et al. (2008) α = 0 0.94476 0.98103 1.04532 1.10983 1.17567 1.52993 

Present 

α = 0 0.94630 0.98207 1.04481 1.10892 1.17399 1.52777 

α = 0.1 1.00262 1.02620 1.08223 1.14374 1.20386 1.54199 

α = 0.2 1.07018 1.07692 1.12401 1.18209 1.23616 1.55662 

10 

Li et al. (2008) α = 0 0.92727 0.94078 0.99523 1.06104 1.12466 1.50333 

Present 

α = 0 0.92874 0.94326 0.99545 1.06260 1.12262 1.50121 

α = 0.1 0.98451 0.98658 1.03203 1.09493 1.15216 1.51525 

α = 0.2 1.05079 1.03655 1.07268 1.13230 1.18350 1.52971 

 

 

where 

𝑁 = {𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦}
𝑡
, 𝑀𝑏 = {𝑀𝑥

𝑏 , 𝑀𝑦
𝑏 ,𝑀𝑥𝑦

𝑏 }
𝑡
, 𝑀𝑠 = {𝑀𝑥

𝑠, 𝑀𝑦
𝑠 , 𝑀𝑥𝑦

𝑠 }
𝑡
 (22) 

𝜀 = {𝜀𝑥
0, 𝜀𝑦

0, 𝜀𝑥𝑦
0 }

𝑡
, 𝑘𝑏 = {𝑘𝑥

𝑏, 𝑘𝑦
𝑏 , 𝑘𝑥𝑦

𝑏 }
𝑡
, 𝑘𝑠 = {𝑘𝑥

𝑠 , 𝑘𝑦
𝑠 , 𝑘𝑥𝑦

𝑠 }
𝑡
 (23) 

𝐴 = [

𝐴11 𝐴12 0
𝐴12 𝐴22 0
0 0 𝐴66

] , 𝐵 = [

𝐵11 𝐵12 0
𝐵12 𝐵22 0
0 0 𝐵66

] , 𝐷 = [

𝐷11 𝐷12 0
𝐷12 𝐷22 0
0 0 𝐷66

] (24) 

𝐵𝑠 = [

𝐵11
𝑠 𝐵12

𝑠 0

𝐵12
𝑠 𝐵22

𝑠 0

0 0 𝐵66
𝑠
] , 𝐷𝑠 = [

𝐷11
𝑠 𝐷12

𝑠 0

𝐷12
𝑠 𝐷22

𝑠 0

0 0 𝐷66
𝑠
] , 𝐻𝑠 = [

𝐻11
𝑠 𝐻12

𝑠 0

𝐻12
𝑠 𝐻22

𝑠 0

0 0 𝐻66
𝑠
] (25) 
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𝑆 = {𝑆𝑥𝑧
𝑧 , 𝑆𝑦𝑧

𝑠 }
𝑡
, 𝛾 = {𝛾𝑥𝑧, 𝛾𝑦𝑧}

𝑡
, 𝐴𝑠 = [

𝐴44
𝑠 0

0 𝐴55
𝑠 ] (26) 

The stiffness coefficients Aij and Bij, etc., are defined as 

{

𝐴11 𝐵11 𝐷11 𝐵11
𝑠 𝐷11

𝑠 𝐻11
𝑠

𝐴12 𝐵12 𝐷12 𝐵12
𝑠 𝐷12

𝑠 𝐻12
𝑠

𝐴66 𝐵66 𝐷66 𝐵66
𝑠 𝐷66

𝑠 𝐻66
𝑠
} = ∫ 𝑄11

+
ℎ
2

−
ℎ
2

(1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), 𝑓2(𝑧)){

1
𝜈

1 − 𝜈

2

}𝑑𝑧 (27) 

(𝐴22, 𝐵22, 𝐷22, 𝐵22
𝑠 , 𝐷22

𝑠 , 𝐻22
𝑠 ) = (𝐴11, 𝐵11, 𝐷11, 𝐵11

𝑠 , 𝐷11
𝑠 , 𝐻11

𝑠 ) (28) 

𝐴44
𝑠 = 𝐴55

𝑠 = ∫
𝐸(𝑧)

2(1 + 𝜈)
[𝑔(𝑧)]2𝑑𝑧

+
ℎ
2

−
ℎ
2

 (29) 

(𝐼1, 𝐼2, 𝐼3, 𝐼4, 𝐼5, 𝐼6) = ∑∫ (1, 𝑧, 𝑧2, 𝑓(𝑧), 𝑧𝑓(𝑧), (𝑓(𝑧))2)
ℎ/2

−ℎ/2

3

𝑛=1

𝜌(𝑧)𝑑𝑧 (30) 

Eq. (20) can be expressed in terms of displacements (u, v, wb, ws) by substituting the stress 

resultants from Eq. (21). For FG plates, the equilibrium Eq. (20) take the forms 

𝐴11𝑑11𝑢0 + 𝐴66𝐷22𝑢0 + (𝐴12 + 𝐴66)𝑑12𝑣0 − 𝐵11𝑑11𝑤𝑏 − (𝐵12 + 2𝐵66)𝑑122𝑤𝑏 
−(𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑122𝑤𝑠 − 𝐵11

𝑠 𝑑111𝑤𝑠 = 𝐼0𝑢
..
 

(31) 

𝐴22𝑑22𝑣0 + 𝐴66𝑑11𝑣0 + (𝐴12 + 𝐴66)𝑑12𝑢0 − 𝐵22𝑑222𝑤𝑏 − (𝐵12 + 2𝐵66)𝑑112𝑤𝑏 
−(𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑112𝑤𝑠 − 𝐵22

𝑠 𝑑222𝑤𝑠 = 𝐼𝑣
..
 

(32) 

𝐵11𝑑111𝑢0 + (𝐵12 + 2𝐵66)𝑑122𝑢0 + (𝐵12 + 2𝐵66)𝑑112𝑣0 +𝐵22𝑑222𝑣0 − 𝐷11𝑑1111𝑤𝑏 
−2(𝐷12 + 2𝐷66)𝑑1122𝑤𝑏 − 𝐷22𝑑2222𝑤𝑏 − 𝐷11

𝑠 𝑑1111𝑤𝑠 − 2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝑑1122𝑤𝑠 

−𝐷22
𝑠 𝑑2222𝑤𝑠 = 𝐼0(𝑤

..

𝑏 +𝑤𝑠) − 𝐼2𝛻2𝑤𝑏
....

 

(33) 

𝐵11
𝑠 𝑑111𝑢0 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑122𝑢0 + (𝐵12

𝑠 + 2𝐵66
𝑠 )𝑑112𝑣0 + 𝐵22

𝑠 𝑑222𝑣0 − 𝐷11
𝑠 𝑑1111𝑤𝑏 

−2(𝐷12
𝑠 + 2𝐷66

𝑠 )𝑑1122𝑤𝑏 − 𝐷22
𝑠 𝑑2222𝑤𝑏 −𝐻11

𝑠 𝑑1111𝑤𝑠 − 2(𝐻12
𝑠 + 2𝐻66

𝑠 )𝑑1122𝑤𝑠 

−𝐻22
𝑠 𝑑2222𝑤𝑠 + 𝐴55

𝑠 𝑑11𝑤𝑠 + 𝐴44
𝑠 𝑑22𝑤𝑠 = 𝐼0(𝑤

..

𝑏 +𝑤𝑠) −
𝐼2
84
𝛻2𝑤𝑏

..

..

 

(34) 

where dij, dijl and dijlm are the following differential operators 

𝑑𝑖𝑗 =
𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
, 𝑑𝑖𝑗𝑙 =

𝜕3

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙
, 𝑑𝑖𝑗𝑙𝑚 =

𝜕4

𝜕𝑥𝑖𝜕𝑥𝑗𝜕𝑥𝑙𝜕𝑥𝑚
, (𝑖, 𝑗, 𝑙,𝑚 = 1, 2) (35) 

The following representation for the displacement quantities of the shear deformation theories is 

appropriate in the case of the free vibration problem 

{

𝑢0
𝑣0
𝑤𝑏
𝑤𝑠

} = ∑ ∑

{
 
 

 
 𝑈𝑚𝑛 cos( 𝜆𝑥) sin( 𝜇𝑦)𝑒

𝑖𝜔𝑡

𝑉𝑚𝑛 sin( 𝜆𝑥) cos( 𝜇𝑦)𝑒
𝑖𝜔𝑡

𝑊𝑏𝑚𝑛 sin( 𝜆𝑥) sin( 𝜇𝑦)𝑒
𝑖𝜔𝑡

𝑊𝑠𝑚𝑛 sin( 𝜆𝑥) sin( 𝜇𝑦)𝑒
𝑖𝜔𝑡
}
 
 

 
 ∞

𝑛=1

∞

𝑚=1

 (36) 
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Table 2 Fundamental frequency results for perfect and imperfect FGM sandwich plate with homogeneous 

soft-core 

h/b k Theory 
 

α 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 1-8-1 

0.01 

0 

Li et al. (2008) α =0 0.96022 0.96022 0.96022 0.96022 0.96022 0.96022 

Present 

α = 0 0.96021 0.96021 0.96021 0.96021 0.96021 0.96021 

α = 0.1 1.02355 1.00992 1.00111 0.99678 0.99041 0.97196 

α = 0.2 1.10114 1.06822 1.04773 1.03789 1.02366 0.98415 

5 

Li et al. (2008) α = 0 1.92090 1.94313 1.93623 1.86207 1.88530 1.57035 

Present 

α = 0 1.92089 1.94329 1.93653 1.86236 1.88552 1.57035 

α = 0.1 2.01349 2.02128 2.00310 1.92081 1.93591 1.58833 

α = 0.2 2.12093 2.10950 2.07706 1.98514 1.99058 1.60695 

10 

Li et al. (2008) α = 0 1.91064 1.94687 1.95044 1.88042 1.91162 1.60457 

Present 

α = 0 1.91061 1.94699 1.95075 1.88134 1.91190 1.60457 

α = 0.1 2.00053 2.02358 2.01668 1.93884 1.96233 1.62299 

α = 0.2 2.10447 2.10999 2.08978 2.00270 2.01696 1.64202 

0.1 

0 

Li et al. (2008) α = 0 0.92897 0.92897 0.92897 0.92897 0.92897 0.92897 

Present 

α = 0 0.92780 0.92780 0.92780 0.92780 0.92780 0.92780 

α = 0.1 0.97725 0.96995 0.96406 0.96024 0.95580 0.93930 

α = 0.2 1.01821 1.01583 1.00439 0.99593 0.98651 0.95124 

5 

Li et al. (2008) α = 0 1.841 98 1.82611 1.78956 1.72726 1.72670 1.46647 

Present 

α = 0 1.841 14 1.83869 1.81275 1.75030 1.74351 1.46626 

α = 0.1 1.92443 1.90628 1.86905 1.80018 1.78585 1.48304 

α = 0.2 2.02034 1.98201 1.93105 1.85464 1.83159 1.50040 

10 

Li et al. (2008) α = 0 1.840 20 1.83987 1.80813 1.74779 1.74811 1.49481 

Present 

α = 0 1.838 16 1.84978 1.83254 1.81938 1.76885 1.49449 

α = 0.1 1.92042 1.91731 1.88921 1.82296 1.81310 1.51146 

α = 0.2 2.01507 1.99329 1.95185 1.87805 1.85925 1.52903 

 

 

where λ = mπ/a, μ = nπ/b and Umn, Vmn, Wbmn, Wsmn being arbitrary parameters and  denotes the 

Eigen frequency associated with (m, n)th Eigen mode. 

 

 
4. Results and discussion 
 

In this section, we present the dynamic analysis of sandwich FGM plate using a new refined 

shear deformation theory. The effect of the volume fraction of the porosity, power law index, side to 

thickness ratio and the thickness ratio of the functionally graded layer is studied. In this work, only 

simply supported boundary conditions are considered. The FG plate is taken to be made of aluminum 

and alumina with the following material properties: 

Ceramic (Pc: Al2O3): Ec = 380 GPa;  = 0.3; ρc = 5700 kg/m3; 
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Table 3 Fundamental frequency results for perfect and imperfect FGM sandwich plate with FGM core 

h/b Theory 
 

α k = 1 k = 2 k = 5 k = 10 

0.01 

Li et al. (2008) α = 0 1.38669 1.44491 1.53143 1.59105 

Present  

α = 0 1.38666 1.44488 1.53140 1.59103 

α = 0.1 1.46163 1.51939 1.60689 1.66791 

α = 0.2 1.55024 1.60677 1.69477 1.75715 

0.1 

Li et al. (2008) α = 0 1.34847 1.40828 1.49309 1.54980 

Present  

α = 0 1.34539 1.40525 1.49055 1.54759 

α = 0.1 1.41499 1.47545 1.56209 1.62040 

α = 0.2 1.49666 1.55747 1.64520 1.70473 

0.2 

Li et al. (2008) α = 0 1.25338 1.31569 1.39567 1.44540 

Present  

α = 0 1.24373 1.30615 1.38774 1.43856 

α = 0.1 1.30150 1.36650 1.45011 1.50192 

α = 0.2 1.36815 1.43643 1.52221 1.57499 

 

 

Fig. 3 Porosity influence on the dimensionless frequency versus the thickness ratio h/b for FGM 

sandwich plate with homogeneous hardcore 
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Fig. 4 Porosity influence on the dimensionless frequency versus the thickness ratio h/b for FGM 

sandwich plate with homogeneous soft-core 

 

 

Metal (Pm: Al): Em = 70 GPa;  = 0.3; ρc = 2702 kg/m3. 

To validate accuracy of the new refined plate theory, the comparisons between the present results 

and the available results obtained by Li et al. (2008). for different values of the gradient index, the 

side to thickness ratio and the layer thickness ratios. Table 1 present the results of the natural 

fundamental frequency parameter () of simply supported square FGM plates of Type A with six 

material distributions and for three values of volume fraction of the porosity ( = 0,  = 0.1,  = 

0.2). It can be seen that the results show a satisfied agreement with those obtained by Li et al. (2008) 

when  = 0 and becomes higher when  ≠ 0. 

The fundamental frequency results for perfect ( = 0) and imperfect ( ≠ 0) FGM sandwich plate 

with homogeneous soft-core are presented in Table 2. the fundamental frequency is calculated for 

different value of the power law index (0, 5 and 10) and side to thickness ratio (h/b = 0.01 and h/b 

= 0.1). It can be seen that, the vibration frequencies obtained when  ≠ 0 are much higher than those 

computed when  = 0. 

From the results presented in Table 3, it is shown that with increase of material rigidity (from 1 

to 10) and volume fraction of the porosity (from 0 to 0.2) causes an increase in the fundamental  
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Fig. 5 Porosity influence on the dimensionless frequency versus the thickness ratio h/b for FGM 

sandwich plate with FGM core 

 

 

frequency. This last decrease with the increases of the side of the thickness ratio h/b (from 0.01 to 

0.2). 

The effect of the porosity in the dimensionless frequency versus the thickness ratio h/b for FGM 

sandwich plate with homogeneous hardcore is presented in Fig. 3. As it can be seen, the presence of 

the porosity in the FGM sandwich plate with homogeneous hardcore increases the dimensionless 

frequency. Also, it is seen that the results decrease smoothly as the amount of thickness ratio. 

Through thickness variation of dimensionless frequency for FGM sandwich plate with 

homogeneous soft-core with several values of volume fraction of the porosity is shown in Fig. 4. 

We can observe that decrease with increases of the thickness ratio. Moreover, the dimensionless 

frequency in the thin plates are more sensitive than the thick plate to the volume fraction of the 

porosity. 

Fig. 5 depicts the dimensionless frequency versus the thickness-side ratios of simply supported 

power-law FGM sandwich plates with FGM core for different values of the volume fraction of the 

porosity. The results are the maximum for the thin plates and the minimum for the thick plates. It 

can be concluded that the thin plates are slightly more sensitive than the thick plate to the porosity 

for FGM sandwich plates with FGM core. 
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5. Conclusions 
 

A new simple sinusoidal for four-variable theory of high order shear and normal deformation 

theory is developed for functionally graded sandwich plates FGM. The principle of virtual 

displacements is used to derive the governing equations and boundary conditions. Then, analytical 

solutions for functionally graded porous square sandwich plates are presented. The inclusions of 

porosity parameters and exponent of the volume fraction P are investigated. The effects of various 

parameters, such as thickness ratio, gradient index and volume fraction of porosity on the vibration 

of FGM ceramic-metal sandwich plates symmetrical are all discussed. The effect of the porosity on 

the dimensionless frequency analysis of simply supported FG sandwich plates based on the present 

refined plate theory is investigated analytically in this paper. The modified rule of mixture covering 

porosity phases is used to describe and approximate material properties of the imperfect FG plates. 

Accuracy and convergence of this theory was verified by comparing the results obtained with those 

reported in the literature for the perfect FG plate. The influence of the volume fraction of the porosity 

on the fundamental frequencies are presented numerical and graphical forms. Parametric studies for 

varying of the power law index, the side-to-thickness ratio, the layer thickness ratios and the volume 

fraction of the porosity are also discussed. As well, numerical results of the present high order shear 

and normal deformation theory is accurate in predicting the dynamic response of non-porous 

sandwich plates. In addition, the present theory gave control results that can be used to evaluate 

various plate theories, and also to compare with the results obtained by another solution. From this 

work, it can be said that the present and simple theory for the resolution of the mechanical behavior 

of FGM plates sandwich with porosity that presses manufacturing defects. 
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