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Effect of porosity on fundamental frequencies
of FGM sandwich plates
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Abstract. In this paper, the porosities effect on the dynamic analysis of the simply supported FGM sandwich plates
is studied using a new refined shear deformation theory taking into account transverse shear deformation effects. This
porosity may possibly occur inside the Functionally Graded Materials (FGMs) during their fabrication. Two common
types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous
core and the sandwich with the homogeneous face sheet and the FGM core. The results are presented for two
constituent metal-ceramic functionally graded plates that have a power law through-the-thickness variation of the
volume fractions of the constituents. The results obtained reveal that the dynamic response is significantly influenced
by the volume fraction of the porosity, power law index, the thickness-side ratios and the thickness of the functionally
graded layer.
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1. Introduction

Functionally Graded Materials (FGMs) are microscopically inhomogeneous composites that are
usually made from a mixture of metals and ceramics. FGMs are regarded as one of the most
promising candidates for future advanced composites in many engineering sectors such as the
aerospace, aircraft, automobile and defense industries, and most recently the electronics and
biomedical sectors (Ichikawa 2000).

The term FGMs was originated in the mid-1980s by a group of scientists in Japan; where this
new material concept was proposed to increase adhesion and minimize the thermal stresses. Since
then, an effort to develop high-resistant materials using FGMs had been continued. FGMs have the
properties that could vary in several suitable directions (Koizumi 1997, Benferhat et al. 2016b). The
mechanical properties of these materials are often being represented in the form of a series (Shi and
Chen 2004) and power-law index variations (Hassaine et al. 2016a, Abdelhak et al. 2016b, Adim
and Hassaine 2016, Daouadji and Benferhat 2016, Abdedezak et al. 2016b, 2018, Adim et al. 2018,
Benhenni et al. 2019a, b, Hadj et al. 2019, Hassaine Daouadji 2013, Belkacem 2016a). In these
graded materials, there is a smooth and continuous variation of material properties across the
thickness. This leads to no stress concentration and better fatigue life.

Sandwich structures are often found in aerospace application such as in skin of wings, vertical
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Fig. 1 The geometry of FGM sandwich plate

fin torque box, aileron, spoilers, etc. The advantages of these structures are that it provides high
specific stiffness and strength for a low-weight consideration. To maintain minimum weight for a
given thermo-mechanical loading condition, FGM could be incorporated in the sandwich
construction (Pradhan and Murmu 2009, Rabia ef al. 2016b, 2018b, Benhenni et al. 2018, Belkacem
et al. 2016b, Hassaine Daouadji 2016c¢, Rabahi 2019, Adim 2016). However, the literature on the
analysis of the FGMs sandwich plate is very few. Zenkour and Sobhy (2010) studied the thermal
buckling of functionally graded material sandwich plates. The thermal loads are assumed to be
uniform, linear and non-linear distribution through-the-thickness. Wang and Shen (2011) carried out
nonlinear vibration, nonlinear bending and post-buckling analyses for a sandwich plate with FGM
face sheets resting on an elastic foundation in thermal environments. Natarajan and Manickam
(2012) carried out the bending and the free flexural vibration behavior of sandwich FGM plates
using an accurate theory which take accounts for the realistic variation of the displacements through
the thickness.

However, in FGM fabrication, micro voids or porosities can occur within the materials during
the process of sintering. This is because of the large difference in solidification temperatures between
material constituents (Zhu et al. 2000, Daouadji and Adim 2016a, b, Rabahi et al. 2016a, 2019).
Wattanasakulpong and Ungbhakorn (2014) also gave the discussion on porosities happening inside
FGM samples fabricated by a multi-step sequential infiltration technique. Therefore, it is important
to take in to account the porosity effect when designing FGM structures subjected to dynamic
loadings. Recently, Wattanasakulpong and Ungbhakorn (2014) studied linear and nonlinear
vibration problems of elastically and restrained FG beams having porosities.

2. Geometric configuration and material properties
2.1 Geometric configuration

Fig. 1 shows rectangular FGM sandwich plate with the uniform thickness composed of three
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Fig. 2 The material variation along the thickness of the FGM sandwich plate

microscopically heterogeneous layers under consideration and the Cartesian coordinate system (x,
v, z) used in the present study. The modified rule of mixture covering porosity phases is used to
describe and approximate material properties of the FG sandwich plates (Fig. 2).

2.2 Numerical simulation procedure
Two different types of functionally graded plates are studied (Hadji er al. 2015, Hassaine

Daouadji et al. 2016b, Rababhi et al. 2018a).
Type A: Power-law FGM face sheet and homogeneous core

—h
@ = 2"k A
=G z€lnhl
V@ =1,  z€[hyhs) 1
—h
VO = 2K 7€ [h,hy]

h3 — a4
Type B: Homogeneous face sheet and power-law FGM core
VD =0,  zE€[hyhy]
z—hy
hs — hy
VA =1,  z€ [hy,hy]

where V(n) (n =1, 2, 3) denote the volume fraction function of layer » and £ is the volume fraction
index (0 < k <o), which dictates the material variation profile through the thickness.

V@ = ( )k, z € [hy, hs] 2

2.3 Effective material properties FGM sandwich plates

A FG plate made from a mixture of two material phases, for example, a metal and a ceramic. The
material properties of FG plates are assumed to vary continuously through the thickness of the plate.
In this investigation, the imperfect plate is assumed to have porosities spreading within the thickness
due to defect during production. Consider an imperfect FGM with a porosity volume fraction, « (a
<< 1), distributed evenly among the metal and ceramic, the modified rule of mixture proposed by
Wattanasakulpong and Ungbhakorn (2014) is used as
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(04 (04
P=Pm(Vm_E)+Pc(VC_§) (3)

Now, the total volume fraction of the metal and ceramic is: V,, + V. = 1, and the power law of
volume fraction of the ceramic is described as

z 1
V.=(=+2-)k 4
e=G+) (4)
Hence, all properties of the imperfect FGM can be written as
z 1 K a
PZ(PC_Pm)(E‘l'E) +Pm_(Pc+Pm)E (5)

It is noted that the positive real number & (0 < k < 0), is the power law or volume fraction index,
and z is the distance from the mid-plane of the FG plate. The FG plate becomes a fully ceramic plate
when £ is set to zero and fully metal for large value of k. Thus, the Young’s modulus (£) and material
density (p) equations of the imperfect FGM beam can be expressed as (Atmane ef al. 2015, Hadji et
al. 2015, Hassaine Daouadji 2017, Daouadji et al. 2008)

VA 1k a
E(z) = (E;. - Em)(ﬁ"’i) +Ep — (Ec + Em)z

z 1k a (6)
p(2) = (pc = pr) (G + )"+ Pm = (P + Pm) 5

However, Poisson’s ratio (v) is assumed to be constant. The material properties of a perfect FG
plate can be obtained when « is set to zero.

3. Mathematical formulation

The displacements of a material point located at (x, y, z) in the plate may be written as follows

_ adwy, . omzZ__ 0w
U(x,y,2) = up(x,y) = 7—-L = (7 = sin( 7)) ==

dwg (7)
ay

dwy, . nz
5, ~ (2= sin(3)

v(x,¥,2) =vo(x,y) — 2
w(x,y,z) = wy(x,y) + wg(x,y)

where uo and vo are the mid-plane displacements of the plate in the x and y direction, respectively;
wp and wy are the bending and shear components of transverse displacement, respectively, while f{z)
represents shape functions determining the distribution of the transverse shear strains and stresses
along the thickness and is given as (Benferhat et al. 2016a, Rabia et al. 2016¢)

. mz
f(2) = z=sin(—) ®)
The strain components are related to the displacements given in Eq. (7) can be expressed as

— 0 b ol E N
Ex =& tzky+(z sm(h))kx

)

nz
ey =€y +zkh+(z— sin(T)) ks
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The stress-strain relationships accounting for transverse shear deformation in the plate coordinate
can be written as

Oy Q2 Q22 0 [{&
0 0 Qs6 Yxy (11)

{Tyz} — [Q44 0 ]{yyz}

Tzx 0 Q55 Yzx

where (0y, 0y, Tuy, Trz, Tyz) and (&, &x, Pxy» Yxz» Pyz) are the stress and strain components, respectively.
Stiffness coefficients, Q; can be expressed as

E(z) VE(z) E(z)

Q11 =022 = 1—v2’ Q12 = 1—v2’ Qa4 = Us5 = Qg6 = m (12)

Ox [Qll Q12 0] Ex

Toy

The total potential energy of the FGM sandwich plate may be written as
1
Ue = E_[V(O-xgx + Oy &y + TxyVxy + TyzVyz + TuxVax)AV (13)
The principle of virtual work for the present problem may be expressed as follows

1
Ue =5 fv (Nxed + Nyed + Nyyed, + M2k + Mpky + M2, k2, + Miks + Myks (14)
+ M3ykzy + S5o¥5, + SEvi,)dxdy

where
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N

N, Ny, Xy +h 1
b b b 2
My, My, Mgy, = fh (0%, Ty, Txy) {Z }dz (15)
M5 M5, Ms,) Tz f(2)
2
(5255 = [, Genty) 91z (16)
2
The kinetic energy of the plate can be written as
~ 1 1
~2f p(02 472 + WZ)dV 2 [, Lo (ii% + 92 + (W, + vis) 2 dxdy 17
+1/2 | 2+6Wb 2 Msyz + @929y drd 0
/ f(z(( D7 (500 g5 (GO + (5 )M)dxdy
where p is the mass of density of the FG plate and /; (i = 0, 2) are the inertias defined by
3 hnia
Uot) =" [ z¥pdz (19)
h

n=1""n
Hamilton’s principle (Delale and Erdogan 1983) is used to derive the equations of motion

appropriate to the displacement field and the constitutive equation. The principle can be stated in an
analytical form as

0= j SV, — Tyt (19)
0

where ¢ indicates a variation with respect to x and y.

By substituting Egs. (14) and (17) into Eq. (19) and integrating the equation by parts and
collecting the coefficients of du, dv, dws and dws, the equations of motion for the FG sandwich plate
are obtained as follows

(. ON, OJNy,, .
ou:—— =]
u: o + 3y olU
ONyy 0N, }
: — =
v o + 3y oV
a*Mb _9*Mp, 9*M) %w, 9w
< . X xy y _ - - b b 20
Swy: 0x2 0xdy + dy? —IO(Wb"‘Ws)—Iz(W"' E)yz) (0)
0*Ms _0*M;, 0°M; 0S5, 0S;, I, 9%w, 0%w,
Swy: =]
Wsi gz t dxdy + dy? Tox t dy o(Wp +ws) = 84(c')x2 6y2)
\

Using Eq. (11) in Eq. (15), the stress resultants of a sandwich plate made up of three layers can
be related to the total strains by

N A B BS](e
Mb A D DS Kb},  S=A4%% (21)
M BS DS kS




Effect of porosity on fundamental frequencies of FGM sandwich plates

Table 1 Fundamental frequency results for FGM sandwich plate with homogeneous hardcore

31

w
hib-— k Theory a 1-0-1 212 1-1-1 221 121 1-8-1

Lietal. (2008) =0  1.88829 1.88829 1.88829 1.88829 1.88829 1.88829

. a=0  1.88825 1.88825 1.88825 1.88825 1.88825 1.88825

Present a=0.1 197464 195642 194455 1.93869 193001 1.90463

=02 207409 2.03256 2.00621 1.99341 197467 1.92145

Lietal. (2008) a=0 096563 099903 1.06309 1.13020 1.19699 1.56988

ool s a=0 096564 099904 1.06309 1.13019 1.19697 1.56985

Present a=0.1 102506 1.04426 1.10114 1.16570 122718 1.58416

=02 1.09700 1.09624 1.14361 120478 125981 1.59888

Lietal (2008) a=0 095042 095934 101237 1.08065 1.14408 1.54164

" a=0 095045 095937 101236 1.08068 1.14405 154162

Present a=0.1 101080 1.00382 1.04928 1.11516 1.17331 1.55362

=02 1.08435 1.05509 1.09055 1.15320 120494 1.56808

Li et al. (2008) =0  1.82682 1.82682 182682 1.82682 1.82682 1.82682

. =0  1.82453 1.82453 182453 183453 1.82453 1.82453

Present a=0.1 190493 1.88882 1.87815 1.87259 1.86481 1.84065

=02 199724 196058 1.93690 192474 190793 1.85722

Li et al. (2008) =0 094476 098103 1.04532 1.10983 1.17567 1.52993

ol s =0 094630 098207 1.04481 1.10892 1.17399 1.52777

Present a=0.1 100262 1.02620 1.08223 1.14374 120386 1.54199

=02 1.07018 1.07692 1.12401 1.18209 123616 1.55662

Li et al. (2008) =0 092727 094078 0.99523 1.06104 1.12466 1.50333

" =0 092874 094326 099545 1.06260 1.12262 1.50121

Present a=0.1 098451 098658 1.03203 1.09493 1.15216 1.51525

=02 1.05079 1.03655 1.07268 1.13230 1.18350 1.52971

where
N ={Ny, Ny, Ny}, M2 ={Mb,mb,MEY,  MS = {MS,MS, M5} (22)
e={e2,e% e}, kP ={kLkb kb)), kS ={kS K5k} (23)
Ay Agg 0 B11  Bi» 0 Di; Dy, 0
A=|4y, Ap, O, B=|By By 0|, D=|Dyp Dy, 0 (24)
0 0 A [0 0 B 0 0 Dg
By Bi, 0 [Df, Df, O Hi; Hi; 0
BS=|B;, B, 0|, Ds=|[Dp; D5, 0 HS=|H}, H5, O (25)
0 0 B 0 0 D 0 0 H
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A 0
s={st.5) vl w8 4] (26)

The stiffness coefficients 4; and Bj;, etc., are defined as

1
Ay By Dy By Diy Hp v

L
2

A1, By, Dy, Bi, Di, Hf, :fh Q11 (1,2,2%,f(2),2f (2), f*(2)) 1—y (42 (27)

Age Bes Des Bgs Dgs Hee 2

2
(Azz'Bzz'Dzz;sz'sz;Hfz) = (A11rB11'D11rBf1'D1S1rH1S1) (28)
h
2 E(2)
Ay = A3 = fh m[g(z)]zdz (29)
2
h/2
(I I3, 1, 15, 1) = Z j (12,22 f(@),2 (2), (f ())?) p(2)dz (30)
n/2

Eq. (20) can be expressed in terms of displacements (u, v, ws, ws) by substituting the stress
resultants from Eq. (21). For FG plates, the equilibrium Eq. (20) take the forms

Aq1d11ug + AgeDooug + (A2 + Age)d12V9 — B11d11Wp — (Biz + 2Bgg)d122Wp

31
—(Bf; + 2Bgs)d12,Ws — Bi1dy11ws = Ioyu (31)

Agadaavg + Aged11Vo + (Arz + Age)di2Ug — BaadazaWy — (Biz + 2Bg6)di12Wp

_(sz + 2326)d112W5 - Bgzdzzzws =[v (32)

Bi1di11ug + (B1z + 2Bge)di22Ug + (B1z + 2B66)d112V0 + Baada2200 — D11di111Wh
—2(D12 + 2Dg6)d1122Wp — D22d2222Wp — Di1d1111Ws — 2(Di5 + 2Dge)d1122Ws (33)
—D3,d5200Ws = Ip(Wp + ws) — I,V 2w,

Bf1d111uo + (Biz + 2Bgg)diz2ug + (Bi; + 2Bgg)d112V0 + B22d22,V0 — Diyd1111Wp

—2(D{; + 2Dgg)d1122Wp — D3rdo32,wp — Hijdq111Ws — 2(Hfz + 2HZg)d1122Ws (34)

I
—H3,d2225Ws + AZsd11Ws + Afadaaws = Io(wp + ws) — 8_4‘72Wb

where dj, dij and dji, are the following differential operators
92 a3 a*
) diji = 233 dijim = 337 A
0x;0%; 0x;0x;0x, 0x;0x;0x,0X,

dij = (i,j, l,m = 1,2) (35)

The following representation for the displacement quantities of the shear deformation theories is
appropriate in the case of the free vibration problem

U)o o Umn cos(Ax) sin(uy)e™*
Vol _ z Z an SIN(Ax) cos( py)e'®t )
V:/b m=1n=1 Wpmn sin(Ax) Sm(ﬂ)’)elwt
s iwt

Wamn sin(Ax) sin(uy)e
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Table 2 Fundamental frequency results for perfect and imperfect FGM sandwich plate with homogeneous

soft-core
w

Wbk Theory a 1-0-1  2-1-2  1-1-1 221 121  1-8-1
Lietal. (2008) a=0 096022 096022 0.96022 096022 0.96022 0.96022
. =0 096021 096021 096021 0.96021 0.96021 0.96021
Present a=0.1 102355 1.00992 1.00111 0.99678 0.99041 0.97196
=02 110114 1.06822 1.04773 1.03789 102366 0.98415
Li et al. (2008) =0 192090 1.94313 1.93623 1.86207 1.88530 1.57035
0o s a=0 192089 194329 193653 1.86236 1.88552 1.57035
Present a=0.1 201349 2.02128 2.00310 192081 193591 1.58833
=02 2.12093 2.10950 2.07706 1.98514 1.99058 1.60695
Li et al. (2008) —0 191064 1.94687 195044 188042 191162 1.60457
" a=0 191061 194699 1.95075 1.88134 191190 1.60457
Present a=0.1 200053 2.02358 2.01668 1.93884 196233 1.62299
=02 2.10447 2.10999 2.08978 2.00270 2.01696 1.64202
Li et al. (2008) =0 092897 092897 092897 0.92897 0.92897 0.92897
. a=0 092780 092780 092780 0.92780 0.92780 0.92780
Present a=0.1 097725 096995 096406 0.96024 0.95580 0.93930
=02 101821 1.01583 1.00439 0.99593 0.98651 0.95124
Li et al. (2008) —0 1.84198 1.82611 178956 1.72726 1.72670 1.46647
ol s —0 184114 18389 181275 175030 1.74351 1.46626
Present a=0.1 192443 190628 1.86905 1.80018 1.78585 1.48304
=02 202034 198201 193105 1.85464 1.83159 1.50040
Lietal (2008) a=0 1.84020 1.83987 180813 1.74779 1.74811 1.49481
" —0 183816 184978 1.83254 181938 1.76885 149449
Present a=0.1 192042 191731 1.88921 182296 1.81310 1.51146
=02 201507 199329 195185 1.87805 1.85925 1.52903

where A = ma/a, u = na/b and Unn, Viun, Womn, Wimn being arbitrary parameters and @ denotes the
Eigen frequency associated with (m, n)" Eigen mode.

4. Results and discussion

In this section, we present the dynamic analysis of sandwich FGM plate using a new refined
shear deformation theory. The effect of the volume fraction of the porosity, power law index, side to
thickness ratio and the thickness ratio of the functionally graded layer is studied. In this work, only
simply supported boundary conditions are considered. The FG plate is taken to be made of aluminum
and alumina with the following material properties:

Ceramic (P¢: AloOs): Ec = 380 GPa; v=0.3; pc = 5700 kg/m?;
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Table 3 Fundamental frequency results for perfect and imperfect FGM sandwich plate with FGM core

hib Theory 2
a k=1 k=2 k=15 k=10
Li et al. (2008) a=0 1.38669 1.44491 1.53143 1.59105
0.01 a=0 1.38666 1.44488 1.53140 1.59103
Present a=0.1 1.46163 1.51939 1.60689 1.66791
a=0.2 1.55024 1.60677 1.69477 1.75715
Li et al. (2008) a=0 1.34847 1.40828 1.49309 1.54980
0.1 a=0 1.34539 1.40525 1.49055 1.54759
Present a=0.1 1.41499 1.47545 1.56209 1.62040
a=0.2 1.49666 1.55747 1.64520 1.70473
Li et al. (2008) a=0 1.25338 1.31569 1.39567 1.44540
02 a=0 1.24373 1.30615 1.38774 1.43856
Present a=0.1 1.30150 1.36650 1.45011 1.50192
a=0.2 1.36815 1.43643 1.52221 1.57499
w 1,330 . . . .
2 1-1-1 FGM sandwich plate
%,) 1,235
% 1,140
&
L% 1,045
0,950
0,855 .

fundamental frequencies

0,9

h7h

1-2-1 FGM sandwich plate

0,0

0,1 0,2
h/b

0,3

0.4

0,5

Fig. 3 Porosity influence on the dimensionless frequency versus the thickness ratio h/b for FGM
sandwich plate with homogeneous hardcore
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Fig. 4 Porosity influence on the dimensionless frequency versus the thickness ratio h/b for FGM
sandwich plate with homogeneous soft-core

Metal (Pm: Al): Em =70 GPa; v=0.3; pc = 2702 kg/m?.

To validate accuracy of the new refined plate theory, the comparisons between the present results
and the available results obtained by Li et al. (2008). for different values of the gradient index, the
side to thickness ratio and the layer thickness ratios. Table 1 present the results of the natural
fundamental frequency parameter (@) of simply supported square FGM plates of Type A with six
material distributions and for three values of volume fraction of the porosity (¢ =0, =0.1, a =
0.2). It can be seen that the results show a satisfied agreement with those obtained by Li et al. (2008)
when « = 0 and becomes higher when « # 0.

The fundamental frequency results for perfect (e = 0) and imperfect (e # 0) FGM sandwich plate
with homogeneous soft-core are presented in Table 2. the fundamental frequency is calculated for
different value of the power law index (0, 5 and 10) and side to thickness ratio (h/b = 0.01 and h/b
=0.1). It can be seen that, the vibration frequencies obtained when « # 0 are much higher than those
computed when « = 0.

From the results presented in Table 3, it is shown that with increase of material rigidity (from 1
to 10) and volume fraction of the porosity (from 0 to 0.2) causes an increase in the fundamental
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Fig. 5 Porosity influence on the dimensionless frequency versus the thickness ratio h/b for FGM
sandwich plate with FGM core

frequency. This last decrease with the increases of the side of the thickness ratio h/b (from 0.01 to
0.2).

The effect of the porosity in the dimensionless frequency versus the thickness ratio h/b for FGM
sandwich plate with homogeneous hardcore is presented in Fig. 3. As it can be seen, the presence of
the porosity in the FGM sandwich plate with homogeneous hardcore increases the dimensionless
frequency. Also, it is seen that the results decrease smoothly as the amount of thickness ratio.

Through thickness variation of dimensionless frequency for FGM sandwich plate with
homogeneous soft-core with several values of volume fraction of the porosity is shown in Fig. 4.
We can observe that decrease with increases of the thickness ratio. Moreover, the dimensionless
frequency in the thin plates are more sensitive than the thick plate to the volume fraction of the
porosity.

Fig. 5 depicts the dimensionless frequency versus the thickness-side ratios of simply supported
power-law FGM sandwich plates with FGM core for different values of the volume fraction of the
porosity. The results are the maximum for the thin plates and the minimum for the thick plates. It
can be concluded that the thin plates are slightly more sensitive than the thick plate to the porosity
for FGM sandwich plates with FGM core.
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5. Conclusions

A new simple sinusoidal for four-variable theory of high order shear and normal deformation
theory is developed for functionally graded sandwich plates FGM. The principle of virtual
displacements is used to derive the governing equations and boundary conditions. Then, analytical
solutions for functionally graded porous square sandwich plates are presented. The inclusions of
porosity parameters and exponent of the volume fraction P are investigated. The effects of various
parameters, such as thickness ratio, gradient index and volume fraction of porosity on the vibration
of FGM ceramic-metal sandwich plates symmetrical are all discussed. The effect of the porosity on
the dimensionless frequency analysis of simply supported FG sandwich plates based on the present
refined plate theory is investigated analytically in this paper. The modified rule of mixture covering
porosity phases is used to describe and approximate material properties of the imperfect FG plates.
Accuracy and convergence of this theory was verified by comparing the results obtained with those
reported in the literature for the perfect FG plate. The influence of the volume fraction of the porosity
on the fundamental frequencies are presented numerical and graphical forms. Parametric studies for
varying of the power law index, the side-to-thickness ratio, the layer thickness ratios and the volume
fraction of the porosity are also discussed. As well, numerical results of the present high order shear
and normal deformation theory is accurate in predicting the dynamic response of non-porous
sandwich plates. In addition, the present theory gave control results that can be used to evaluate
various plate theories, and also to compare with the results obtained by another solution. From this
work, it can be said that the present and simple theory for the resolution of the mechanical behavior
of FGM plates sandwich with porosity that presses manufacturing defects.
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