Composite Materials and Engineering, Vol. 3, No. 1 (2021) 1-23
DOI: https://doi.org/10.12989/cme.2021.3.1.001 1

Free vibration analysis of sandwich structures reinforced
by functionally graded carbon nanotubes

Alireza Pourmoayed*!, Keramat Malekzadeh Fard?® and Borhan Rousta®

'Department of Mechanical Engineering, University of Khatamul-Anbiya Air Defense, Tehran, Iran
2Department of Aerospace Engineering, MalekAshtar University of Technology, Tehran, Iran
3Institute of Aviation Industry, Tehran, Iran

(Received May 20, 2020, Revised August 18, 2020, Accepted August 20, 2020)

Abstract. In this research, the behavior of free vibrations of sandwich structure with viscoelastic piezoelectric
composite face sheets reinforced by Functionally Graded Carbon Nanotubes (FG-CNTs) and simply supported
boundary conditions using a new improved higher-order sandwich panel theory were investigated. The viscoelastic
sandwich structure is rested on viscoelastic foundation. There are 33 freedom degree based on higher order plate
theories for top, center and bottom of the sandwich plate. To calculate exact solution, all of the stress components were
engaged. The governing equations and boundary conditions were derived via the Hamilton’s principle and finally, these
equations solved by Navier’s method. The accuracy of the present solutions is verified by comparing the obtained
results with the existing solutions. The effect of different distributions of carbon nanotubes on non-dimensional natural
frequency were inquired. Also, the effect of some important parameters such as those of length-to-thickness ratio and
volume percentages of fibers, core thickness, elastic foundation, temperature and humidity changes, magnetic field,
viscosity and voltage on free vibration response of sandwich structure were investigated.
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1. Introduction

Nowadays, sandwich structures vastly are used in aerospace, marine and automobile industries.
Nano sandwich structures are the nanocomposite structures that are made of one or several materials
with different shapes so that they result in lower weight, higher strength and good dynamic
properties. Among these materials, polymeric sandwich nanostructures have higher performance and
in various industries can be used. Also, in order to improve properties of mechanical, thermal and
electrical various reinforces, including nanomaterials to these composite materials are added. In
Mahi and Tounsi (2015), bending and free vibration analysis of isotropic, functionally graded,
sandwich and laminated composite plates using a new hyperbolic shear deformation theory are
presented. They accurate free vibration frequencies using a set of boundary characteristic orthogonal
polynomials associated with Ritz method are calculated. In Ebrahimi and Farazmandnia (2018),
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thermo-mechanical vibration of sandwich beams with a stiff core and face sheets made of
functionally graded carbon nanotube-reinforced composite within the framework of Timoshenko
beam theory is researched. They are shown that the vibration specifications of the curved nanosize
beams are importantly influenced by the surface density effects. In Hadji et a/. (2018), free vibrations
analysis with stretching effect of nanocomposite beams reinforced by Single-Walled Carbon
Nanotubes (SWCNTs) resting on an elastic foundation were studied. Natural frequencies are
obtained for nanocomposite beams and then the effects of different parameters of the beam on the
vibration responses of CNTRC beam are also considered. The bending and free vibration behavior
of Functionally Graded Material (FGM) sandwich rectangular plates using an efficient and higher
order shear deformation theory by Zouatnia and Hadji (2019) are investigated. In Hadji ef al. (2011),
free vibration analysis of Functionally Graded Material (FGM) sandwich rectangular plates using
four-variable Refined Plate Theory (RPT) were investigated. In this study, the sandwich with the
FGM face sheets and the homogeneous core and the sandwich with the homogeneous face sheets
and the FGM core are considered. The fundamental frequencies by solving the eigenvalue problems
are also extracted. In Emdadi ef al. (2019), the free vibration analysis of annular sandwich plates
with various functionally graded porous cores and carbon nanotubes reinforced composite face
sheets based on modified couple stress theory and first order shear deformation theories were
investigated. In Bellifa et a/l. (2016), bending and dynamic behaviors of functionally graded plates
using a new first-order shear deformation theory are enlarged. They showed that the proposed theory
is accurate and simple in solving the static bending and free vibration behaviors of functionally
graded plates. An analytical method for vibrations of monolayer graphene plates on Pasternak
foundation using the modified coupling stress theory by Akgoz and Civalek (2012) were obtained.
A novel five variable refined plate theory for vibration analysis of functionally graded sandwich
plates by Bennoun et al. (2016) is developed. In this study, by dividing the transverse displacement
into bending, shear and thickness stretching parts, the number of unknowns and governing equations
of the present theory is reduced, and hence, makes it simple to use. In Mohammadi et al. (2013), the
non-local free vibrations of circular and hollow monolayer graphene plate on elastic foundation by
differential squaring technique for different boundary conditions were studied. Their results showed
that the natural frequency of these nano-plates with increasing small-scale coefficient for all
boundary conditions were decreased. In Hadji and Safa (2020), the bending analysis of softcore and
hardcore functionally graded sandwich beams using a new hyperbolic shear deformation theory were
investigated. The effect of the deflections, stresses and sandwich beam type on the bending
responses of functionally graded sandwich beams is discussed. In Murmu et al. (2013), the effect of
plane magnetic field on transverse vibrations of graphene plate using the theory of equivalent
nonlocal continuous environment mechanics were investigated. They showed that applying a
magnetic field the natural frequency of the graphene plate increased. Buckling analysis with
stretching effect of functionally graded carbon nanotube-reinforced composite beams resting on an
elastic foundation by Khelifa et al. (2018) is investigated. SWCNTs are aligned and distributed in
polymeric matrix with different patterns of reinforcement. In this research, the effects of different
parameters of the beam on the buckling responses of CNTRC beam are also discussed. In Asgari et
al. (2019), the dynamic instability of a three-layered, symmetric sandwich beam subjected to a
periodic axial load resting on nonlinear elastic foundation was investigated. They showed that the
responses of the dynamic instability of the system by the excitation frequency, the coefficients of
foundation, the core thickness, the dynamic and static load factor were influenced. Wave propagation
in functionally graded beams using various higher-order shear deformation beams theories by Hadji
et al. (2017) were stretched. In this research, the effects of the volume fraction distributions on wave
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propagation of functionally graded beam are also discussed. In Zouatnia et al. (2017), an analytical
solution for bending and vibration responses of functionally graded beams with porosities are
proposed. The Navier solution technique to derive analytical solutions for simply supported beams
are pursued. In this study, the effects of the deflections, stresses and natural frequencies on the
bending and free vibration responses of functionally graded beams are also studied. In Cheraghbak
et al. (2019), free vibration of sandwich beam with flexible core resting on orthotropic Pasternak is
investigated. In this research, the top and bottom layers by carbon nanotubes are reinforced and
sandwich structural by Euler and Frostig theories is modeled. Thermal vibration analysis of FGM
beams using an efficient shear deformation beam theory by Safa et al. (2019) were developed. The
three cases of temperature distribution in the form of uniformity, linearity and nonlinearity through
the beam thickness are considered. Then, the accuracy of solutions by comparing the obtained results
with the existing solutions is validated. In Hadji and Bernard (2020), bending and free vibration
analysis of functionally graded beams on elastic foundations with analytical validation are studied.
The effect of different micromechanical models on the bending and free vibration response of these
beams is also studied. They the effects of power-law index, length-to-thickness ratio, foundation
parameter, the volume fraction of porosity and micromechanical models on the displacements,
stresses and frequencies are also investigated. Static analysis of functionally graded sandwich plates
with porosities based on high-order shear deformation theory by Keddouri ez al. (2019) were studied.
The effects of the material distribution, the sandwich plate geometry and the porosity on the
deflections and stresses of FG sandwich plates are investigated. Hedayati and Aragh (2012) used
three-dimensional elasticity method for vibration analysis of hollow plate reinforced with carbon
nanotubes. They showed that the frequency in the symmetric distribution of carbon cumulative
nanotubes more than the asymmetric and uniform distribution decreased. The bending and free
vibration analysis of multilayered plates and shells by utilizing a new Higher order Shear
Deformation Theory (HSDT) by Zine et al. (2018) are reported. In this study, bending and vibration
results for cylindrical and spherical shells and plates for simply supported boundary conditions are
also extracted.

This study investigated the free vibration analysis of sandwich structure with viscoelastic
piezoelectric composite face sheets reinforced by functionally graded carbon nanotubes using a new
improved higher-order sandwich panel theory. The sandwich structure is rested on viscoelastic
foundation. The equations of motion for this sandwich structure using Hamilton’s principle obtained
and by Navier’s method were solved. Then, influences of various parameters on free vibration of
the sandwich structure were investigated. The results showed that considering magnetic field,
external voltage and elastic foundation lead to increasing of the natural frequency.

2. Theory and formulation
2.1 Basic assumptions

The geometry of the sandwich structure with viscoelastic piezoelectric composite face sheets
reinforced by functionally graded carbon nanotubes schematically are shown in Fig. 1. In this figure,
indices a, b and 4 refer to the length, width and overall height of the sandwich structure, respectively.
The sandwich structure on the viscoelastic foundation was located. Moreover, the top plate with

index “¢”, the bottom plate with index “4” and the central plate which is isotropic with index “c” are
shown.
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Fig. 1 Schematic of viscoelastic piezoelectric composite sandwich structures on viscoelastic foundation

2.2 Different distributions of single wall carbon nanotubes

The various distributions of single-wall carbon nanotubes that including F'G-O, FG-X, FG-V and
uniform distribution are were considered. The volume fraction of these four distributions is defined
as follows.

(Vswenr UD
2z
2|z
2|z|\ .,
2 o Vswent FG—-X
where
Ve _ WswenT

SWCNT = 2

Wswent + (psgﬂim) - (pSVpV;NT) WswcNT 2)

In Eq. (2), pswent, pu and wswenr are the modulus of elasticity of the single-walled carbon
nanotube, polymeric matrix of composite nano-platets and the mass fraction of the single-walled
carbon nanotube, respectively (Shen 2009).

2.3 Extended blending law

In the developed mixing method, the properties of composite facing materials using the following
equations are determined (Alibeigloo 2014)

Er = mEi1Vswent + EmVin

N2 _ Vswent V_m

E, Ey Em ()
N3 _ Vswenr | Vm

GZ 612 Gm

where, 771, 7 and 773 are constants by comparison with molecular dynamics simulations determined
and usually are between zero and one variable. E11, E» and Gi» are the longitudinal, transverse and
shear modulus of the nanotube, respectively.
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2.4 Sandwich kinematics

The sandwich plate from three layers, top, center and bottom composed. The displacements fields
in face sheets, udx,y,z1), vi(x,y,zt) and wix,y,z¢) in the direction of x, y and z, respectively as
follows are explained (Reddy 2003).

u(x,y,z,t) = ug;(x,y,t) + zug; (x, v, t) + z%uy;(x, v, t) + z3uz;(x, y,t)
v(x, Yz, t) = vOi(x' Y, t) + Zvli(x; Y, t) + szzi(x! Y, t) + Z3U3i(x, Y, t) (4)
w(x,y,z,t) = woi(x,v,t) + zwy; (x, y,t) + 22wy (x, y,t)

The displacements fields for center layer are derived as Khalili and Mohammadi (2012)
u(x, Y,z t) = uOC(xJ Y, t) + Zulc(x' Y, t) + ZZuZC(x' Y, t) + Z3u3c(x' Y, t)
v(x,y,2,t) = voc(x,y,t) + z01.(x,y,t) + 22v,.(x, ¥, t) + z3v3.(x, y, 1) (5)
w(x,y,z,t) = woc(x, v, t) + 2wy (x, v, t) + 22wy (x, y, t)

2.5 The stress-strain relations and stress resultants

The stress-strain relations for the top and bottom layers made of piezoelectric composite
materials are as

ol QF, P, @, 0 o P1(er —80AT — X 4HY 1ro o el
ay| |0 @ @ 0 0 Qf||& ~0nAT—XdH| o 0 eb|
<O-z:z>= Qf3 Qgs Q§3 0 0 0 <£5_5§3AT_X§3AH 10 0 e§3 E;Ic)
O'yz 0 0 0 Q4p4 0 0 YJZ/JZ 0 654_ 0 EJ;
or, 0 0 0 0 Qf O Yz e’ 0 o °
o) Lol Q% 0 0 0 QF] vh, ) Lo o o 6
fg};
P
€
D? 0 0 o e o]l o0 0| (EF
pPl=lo o e, o o[{Zl+lo & o|{E?lp=tb
y(— 24 yp 22 y(P=10
Dy ey ey ey 0 0 y};z 0 0 G| \E]
Xz
Vay
where ij,eg-, 5 ,55 and )(g are the coefficients of rigidity, piezoelectric, dielectric, thermal

expansion and moisture, respectively. The components of stress, normal strain, shear strain, electric

displacement, electric field, temperature and humidity changes with 05., eg , yi’]’., Dlp E L.p ,AT and AH

are exposed, respectively. An electric field is written as follows in terms of electric potential function
(Ex' Ey, EZ) = (d).x' by ¢.Z) )

where
o (x,y,2z) = — cos(nz/h) p(x,y) + zVye'®t /2h (8)

where Vj, ¢(x,y) and w are direct voltage, two-dimensional electric potential function and natural
frequency, respectively. Using the Egs. (6)-(8), the strains for the three layers of sandwich structures
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are obtained as follows

du, Ou du du duz, 1[0wpy\’
p__"p__""0p 1p 2 .72p 3 73p , Op
& T x 0x tz ox +z 0x tz ox +2<6x>
2
P 6& _ Vop 0v1p e V3 43 V3 1 Owop
Y 9y dy dy dy oy 2\ 0y
P aw.
&, = ! (x,y,t) + 2zwy(x,y,t)
y % 6& _ dugp  0vgy 0uyyp + 0V1p 452 0uyp 2 0Vyp
Y9y ox dy 0x dy ox dy 0x
dv; 1 0wg, 0w
39V3p 1 IWop OWop
tz dx * 2 0y Ox
dw, OJv aw aw aw
r _“%p v _ YWop ip 2p
Vyz oy Yoz = oy 5 + z2 % + vy + 220,y + 32703,
dw, du aw, aw aw
P _ p P _ Oop 1p 2p
Vaz =t =gtz z? 5 Tl T 27Uy, + 322Uy

6u3p
dy

9)

73

The stress-strain relationships for the center layer made of isotropic materials are as follows

(Khalili et al. 2012)

Oy Qi1 Qf, Qfz O 0 0 1(&x — 0114T — xi;4H)
Oy Qi Q3 Q33 O 0 0 ||ey — 65:4T — x5,4H
oz | _|Qfz Q3 Q35 0 0 0 ) &7 — 0334T — x534H
Oyz[ | 0 0 0 Qi O 0 Yyz
% {0 0 0 0 Q& 0 Vs,
%/ Lo 0 0 0 0 Qg vy
The values of stiffness coefficients (Q) in Eq. (10) are as follows
vE
=05 =05 =2u+1=——+ .
Q11 = Q22 = 033 u T+vy) A +v)(1—2vy)
05, = Q%5 = Q5; = oL
127518 723 T (1 +v) (1 - 2v,)
Q5 = 0% = Qe = = =t —

Based on the relations of strain potential energy, the stress resultants in the face-

are calculated as follows.

p p p p
r Nx A (O-xx\ Mx (O-xx
p p P p
Ny n, |7 M, n, | ¥
p -2 P 2| p
N, _ 2 zz M, _ 2 | Oy
Sap (= { » rdz, .0 (= { p (zdz
Ny iy Myy e | oxy
2 2
p p p p
N vz Oyz M vz Oyz
p p p p
kIVJCZ kO-JCZ L1‘4.762 O-XZ

(10)

(11)

sheets and core

(12)



Free vibration analysis of sandwich structures reinforced by functionally graded carbon nanotubes 7

p

p p g
Py ~h,/2 | Oxx RY —hy/2 ;x
Pp — P 14 2 Rp v o_yy Z3dZ
p —hy/2 D p —h,/2 \O
Pry " Oy Ry ’ xy (12)
Rp —h O'p
vz _ p/2)%z( 2 _
{Rp } = ny2 {ap z%dz, p=tcb
Xz xz

After simplifying the relationships, the values obtained for the stress results in Eq. (12) are as
Appendix A.

3. Governing equations

The governing equations of motion for the face sheets and the core using Hamilton’s principle
are derived.

f SM,dt = f(ant + 811, + 811,)dt =0
(13)
f[(6Tt + 8T, + 8T,) — (Wr, + 8U, + SWS + 6U, + SWE, + 6U, + 6C)]dt =0

where 611;, 611, and 811, are potential energies, top face, center, bottom face in the sandwich
structures, respectively. 8Ty, 8U,, Wt 6T., 6U., SWS.y, 8Ty, 86U, and SWPZ,, are kinetic
energy, the strain energy, the work done by external forces for the upper, central, lower faces and §
denotes the variation operator. §C is the boundary conditions related to displacements, strains and
stresses. Also, the external forces for the sandwich structure in Eq. (13) are the Lorentz forces due
to the magnetic field, the compressive forces and the viscoelastic foundation forces. p is the apparent
index represents the sandwich structure faces, for the top face p = ¢, for the center face (core) p = ¢
and bottom face p = b.
The variation of kinetic energy is extracted as follows.

6T =
0%ug,  0%uy 0%uy, 0%uz, 0%ug, 0%uy,
_( gz e T e TP e )6 °p_<z e T4 e
0%uy, 0%uz, 0%ug, 0%uy, 0%uy, 0%us,
P 5e e ) PG P 5e TP e Y e
0%ug, 0%uy,, 0%uy, 0%us, 0%vy,  0%vy,
Ouizp <Z3 AR R R e L at2
0%v,, 0%v3, 0%vy, 0%y, 0%v,, 0%v3, 14
ij;p +2z? Y +z3 ez >6v0p—<z 312 + z2 ETe +z3 3¢ + z* 6t2> av (14)
p=tc,
0%vy, 0%y, 0%v,, 0%v3, 0%vy, 0%vy,
o (2 ez TE e e Y ge ) P e T e
0%v,, 0%v, 0wy, 0wy, 0*wy, 0*wop,
BT L W i e ro L R
0%wy, 02w, 0*wop 0*wy, 0*wy,
7 at? ’ ez ) oW 7 a2 " ’ a2+ ' ez ) oW
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The following boundary conditions by applying the changes to the Eq. (14) are obtained.

STD.C =
Ougy ouyy , 0Uyy 5 6u3p> ]t [( Ougp , 0uy, 50Uy
[( FTRT FTRNTT: 5u°”o+ ot at % o
Ju, t du, Juy du, du, t du,
4 4 2 P 3 p 4 p 5 p 3 4
ot )Ml”]o + [(Z FTERN TR T ot )MZP]O * [(Z ot
Ju, du, Jus t dv, v, av, dvs
4 14 5 14 6 14 14 14 2 14 3 14
T T o ot )5u3p]o+ [( ot “ o ot ot )
¢ v, , 0V, N av3p) ]f [< , 0V, 5 0V1p (15)
— —2 4 |dV
p;bfvp Svop]0+[(z TR TR 6v1,,0+ A rah i ek
v v, s t v, v, v, v, t
4 D 5 4 3 P 4 p 5 p 6 4
T T )51;2,,]0 * [(Z ot ot %o TF >5v3"]0
dwy,  Owyy, Zawzp) ]t [< owo, 0wy, 36w2p) ]t
+[< at o at 6W°”0+ 25 T at 6W“’0
adw, adw, aw, t
2%Wop | 3 OWip |, OW2p
+[<Z ac X e TF T >6W2p]0
The variation of strain energy can be written as below.
gy
p P o P P ¢ D
SU = Z f afx&fz + 037,’3,585 + azpzdef + afc’y&/xy + ayZSyyZ + 04, 0Vsz av
+DPSEY + DPSE? + DYSEY
p=tc,b |74 X X y Y z Z (16)
B Z f on ey + 0,6y + ab,8el + 07, 6vp, + 05,8V, + 05,6Vay v
Wi, v +D; 5% + D) 5P) + DY 5P,
With some algebraic manipulation and simplifying are obtained.
6U =
o7 [06ug,y ; 06Uy , 00Uy, 3 66u3p] 4
1 ox 0x 0x ox
rdév ddév dov dov
4 op ip 2 2p 3 3p 14
yy | 3y +z 3y +z 3y z 3y ] + 022[5w1p + 225W2p] +
06U, N 6V, N Zc’)6u1p N Zc’)6v1p 2 06Uy N
dy d0x dy dx dy
p
%y| dsv asu 98V +
Z z? 2 + 23 3P + 23 i av (17)
| dx dy Ox
p=t.c,b |4 -
o 6wy, 06wy, , 06w,
p ay Z ay ay + 6U1p +
19}
yz
_2Z5172p + 322617317
rdéw, adw adw
P Op 1p 2 2p 2
o +z + duqy + 226Uy, + 32z°6U ]+
Xz ox ox 0x 1p 2p 3P

DYl + D;’&p}; +DY5¢"

The following boundary conditions for the Eq. (16) are obtained.
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6Ub.C =
(axx(Squ) + (Zaxx8u1p) + (zzafx6u2p)z + (z3afx6u3p)i:] dzdy +

( 8v0p)yz + (2o, 6v1p)yz + (z%0;, 6v2p)y2 + (2%, 5v3p)yz] dzdx +

6v1p) dzdy+ (z%0? 5u2p) dzdx+ (z%a y6v2p)x1dzdy+ + (18)

6u0p) dzdx+( 6v0p) dzdy+(z (Sulp) dzdx+
6u3p) dzdx+(z 6v3p) dzdy

6w0p)y2 + (zo;, 6W1p)y2 + (z%a. ZSWZp);]Z] dzdx +

X
[ 6W0p) + (Z 5W1p)x1 + (ZZsz(gWZp)xj] dzdy
For further 51mp11ﬁcat10n of stresses and electrical displacement, are written the following as

09? Qllgx + le y + Q & + Qleyxy + e§1¢§
D D D
05 legx + sz y +Q5 3<€ + Qzeyxy +e3,9;

azp Q e +Q23 v +Q ep+e33¢fz’
O—J?y Q44yxy
P 4D
Q44sz + ez4¢,y (19)

= Q44sz + efs‘p,g
DJI? = 615)/xz zflqb,la)c
D} = ekt - Lo
Dp =eb el + eé’zsf,’ +epsel — (5. ph
p=tcb

Also in this study, in order to be precise the displacement field, the following conditions and
constraints are considered:

» The equality of displacements at the boundary between the middle layer and the upper layer
(participant equations A1, A3 and As)

* The equality of displacements at the boundary between the middle layer and the lower layer
(participant equations A, A4 and A)

* Zero transverse strain at free surface of upper layer (participant equations A7 and As)

* Zero transverse strain at free surface of lower layer (participant equations A9 and A1)

* The equalization of normal stress at the boundary between the middle layer and the upper layer
(participant equations A1)

* The equalization of normal stress at the boundary between the middle layer and the lower layer
(participant equations A:2)

* The equality of transverse stresses at the boundary between the middle layer and the upper layer
(participant equations A;3 and A14)

* The equality of transverse stresses at the boundary between the middle layer and the lower layer
(participant equations A5 and A¢)

In this way, 16 new unknowns (4;-1:6) resulting from the conditions of displacements, strains
and stresses at the common boundary of the layers are added to the 33 previous unknowns.
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6c =
(A 1[ut(x Y, ht/z t) - U.C(X V hc/z' t)] + 2-2 [ub(x' Y, _hb/z' t) - uc(x’ Y hC/Z, t)] +
3[17[(76' Y, ht/z t) - UE(X Y h'c/zr t)] + 2-4—[1717(35' Y, _hb/z' t) - Uc(x! Y hc/z! t)] +
AS[ t(x:y' t/2 t) WC(X,y, c/z t)] +Ae[wb(x,y, hb/z t) Wc(xty'h /2 t)]
A7[sz(x Y, ht/z t)] + 2-8[}’3(2(35 Y h't/z t)] +A9[yyz(x Y, hb/2 t)] + 2-10 yxz(x Y, hb/z t)] +

i h h
Qél‘g; (x,y.é, t) + ng%tz (x,y,it, t)

h
J§ +Q53¢} (er:?t't) + [Q% €2 (x,y, —hp/2,8) + Q25 (x,y, —hy/2,) + ] (20)
v

hy h Q3362 (x,y, —hp/2,t) + Q3s¥yn(x,y, —hp/2,t) —
t .t —t C c() ,__C,t) + A 33¢z yz
Qs6lyz (x Yy ) st& BV 7 Y Care(x, v, he/2,8) — Csze5(x,y,he/2,1)

—C3z85 (x,y,—%,t) —Cs38£ (%, ¥, he/2,1)
he
—Cs3€; (x.y, 3 t)
+ 3[ Qa2 (6 v, he /2, 8) = Gov52 (%, ¥, —he /2,0)] + L1alQEsViz (6, ¥, he /2,8) = Gy, (X, 7, —he /2, )] +
le[Qle‘l-)/;z]z(x' Y, _hb/ZJ t) - G;z)’;z(x: Y, hc/ZJ t)] + Alﬁ[Qgsy)Ez(xr Y _hb/zr t) - G:?zyafz(x' V hc/z' t)]

~
K
=

The governing equations for a sandwich structure with viscoelastic piezoelectric composite face
sheets reinforced by functionally graded carbon nanotubes (FG-CNTs) are derived. Hence, after
integration by parts and some algebraic manipulation, thirty-three equations of motion are extracted,
some of which are as follows:

At the top face sheet

02 Use
6“’111 atz +12 atz +I3 atz +[4— atz __Ql 2 _QZ 9x2 _Q3 2 _Q4— dx2
0%v,, 0%y, 0%v,, 0%vs, 0%u, 0%uy,
Q1 ayax - Q5 ayax Q3 ayax - Qs dydx — 2Q7 Uy — 6Q3uz, + Bfy —— Ox2 -+ Chh—— 9x2 +

0%uy, 0%ug, 0%v,, o2y, 0vy; 0vs; ow, ow,
D, Tx2 + EY Ix2 +B126 o +Clzaya + D}, —— 3y +Ef2W+Bf3 T Lyocr, 22

13 a
0%uge  0%vg, azuu 0%y,
t t Dt
16 <6y6x *oxz ) * Cle <6y6x * o ) s

62u2t 0%v,, 0%ug,  0%vs,

L Et [ —=

(ayax *ox )+ 16 <6y6x *ox (21)
0%u 2%y, 0%u 0%v 0%u 0%v 0%u

Zt t Bt ot ot Ct 1t 1t Dt 2t 2t Et 3t

FZa120x + 66( dy? +6x6y oo dy? +6x6y + Des dy? +6x6y + Bes dy?

azv3t Owge owy, oWy
+o— | + 4§ + Bis ox + Css ax + Aty + 2BEsuy, + 3CEsus, — Yispi(x, y, t) +

dxdy 5 Ox
h
t/11 + g — ax (/111Q§1(ht/2)) + /114Q§5 =0
¢ taz 0°w 02wy, ¢ 0°w, 0%w 0%w v, ¢ 0vy;
6WOIO atz +11 6t2 +12 atz _A44 a 2 +B44 a 2 +C44 a 2 +A44 a +2 A4 ay
. OV ow ow. 02wy, ou, 0y,
+3C,—— 3y Y24q,')yy(x y,t) + ALg 6 > +B55 6 > +C55 92 +A55 6 +ZB55 Fp + 22)
Ju d
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And at the core
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, 0% , 0%y , 0°1, , 0%V , 0%V , 0%V , 0%V
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6 V3p a Upp 6 Uqp 6 Uyp 6 u3b
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And some from Lagrangian coefficients are as Appendix B.

4. Solution

In order to solve the free vibration problem of simply supported sandwich structure, the Navier
method is applied (Qatu 2004). For satisfying the boundary conditions, the displacement fields based
on double Fourier series are assumed to be in the following form

Upp (X, y,1) = Z z ugrbnezwt sin ng)’) cos (Tﬂx)
m 1n

Up(x,y,t) = Z Zu m n iwt gin (?) cos (Tnx)
m 1n

Upp (X, y,8) = Z Zu o n iwt gin ?) cos (Tnx)
m 1n

Uz, (x,y,t) = Z unzl,n el®t gin (?) cos (mzlrx) 27
m;l n;l

Vop (x,y,t) = z z voﬂzl?n el®t cog (nbﬂ) sin (%)
m;l n0=01

Vip (x,y,t)= Z Z Vﬂ,n elot cos (nbﬂ) sin (%)
m;l n0=01

) (x,yt)= Z Z vﬂ;’n elot cos (nbﬂ) sin (%)
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. nm
V3, (X, ¥, 1) = Z vyt el®t cos (T}/) sin(mmx/a)
m0=01 n:ol
Wop (X, ¥, t) = Z z W' e'“tsin(nmy/b) sin(mnx/a)
m;l no=01
wip,(x,y,t) = Z z wip" e'“tsin(nmy/b) sin(mmnx/a) (27)
m;l n0=01
Wop (X, ¥, 1) = Z wiyt e'®tsin(nmy/b) sin(mmx/a), p=tch
m=1n=1
PS(x,y,t) = 2 Z ¢S i@t sin(nmy/b) sin(mnx/a), s=tb

=1 1

3
S
i

where m is the axial half-wave number and n is the circumferential wave number. Also, ugy*, uf}",
Uzp's Uy’ Vopt Vil Vap's Uiyt Wopt, wipt, wipt, ¢5™" are the constant amplitudes of
vibrations associated with the natural mode shapes. Also, w is the natural angular frequencies (rad/s)
related to mode number (m, n).

And for the Lagrange coefficients are as Appendix C.

Then, above relationships are written in the following matrix

MY+ CY+KY=0
uip

Y={gtr, i=1-33  j=1-16 (28)

where ¢, ¢ are structural damping coefficient and damping coefficient of viscoelastic foundation,

respectively. Finally, by solving the Eq. (28) the natural frequency of the sandwich structure is
calculated.

4. Numerical results and discussion

For validation, the present study with the analysis of vibration stability and bending of sandwich
structures with composite faces based on higher order theory was compared. In this research, higher
order theory with eleven degrees of freedom and a total of 33 degrees of freedom for sandwich
structures was used. The present study deals with first-order shear deformation theory with five
degrees of freedom (FSDT5), third-order shear deformation theory with seven degrees of freedom
(TSDTY), and higher-order theories with nine, eleven, and thirteen degrees of freedom (HSDT) has
been compared.

The properties of the materials used to validate the carbon nanotube-reinforced composite faces
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Table 1 Properties of carbon nanotubes (Wang and Shen 2012)

o2 (X 1076/K) oa1 (X 1076/K) G2 (TPa) E11 (TPa) E11 (TPa) T (K)
5.1682 3.4584 1.9445 7.0800 5.6466 300
5.0189 4.5381 1.9643 6.9348 5.5308 500
4.8943 4.6677 1.9644 6.8643 5.4744 700

Table 2 The properties of material for base (matrix) composite and core sandwich structure
a (x107/K) v p (kg/m®) E (GPa) Material
45(1 + 0.0000AT7) 0.3 1150 (3.52-0.0034 T) PMMA
7.5788(1 +6.638 x 10 4T —3.147 x 106 x T?) 0.29 4429 122.56(1 — 0.0004568T) Ti-6Al-4v

Table 3 The properties, matrix face of reinforced piezoelectric composite with single wall carbon nanotubes

Parameters Polyvinylidene fluoride
E 8.3 GPa
v 0.18
€31 —-0.13 C/m?
€32 —0.145 C/m?
€15 —0.009 C/m?
€24 —-0.276 C/m?

Table 4 The non-dimensional natural frequency of the square sandwich plate with reinforced composite faces

2
and functional gradient nanotubes (12 = 24 &)
h o+l Ec

FSDT5 TSDT7 HSDT9 HSDT11B HSDT11A HSDT13
(Natarajan et (Natarajan (Natarajan (Natarajan (Natarajan  (Natarajan
al. 2014) etal. 2014) etal. 2014) etal.2014) etal.2014) etal. 2014)

Present T( )Distribution
model nanotubes

4.2504 4.3199 4.1677 4.1736 3.8108 3.8203 4.2315 300 UD
4.0789 4.1501 3.9623 3.9680 3.5492 3.5588 4.0715 500

4.4561 4.5394 4.2554 4.2602 3.7714 3.7815 3.1724 300 FG-X
4.2801 4.3657 4.0232 4.0277 3.4809 3.4910 3.9469 500

and the isotropic core of the sandwich structure in the Tables 1-2 are shown.
The properties, matrix face of reinforced piezoelectric composite with single wall carbon
nanotubes in the Table 3 was shown.

The non-dimensional natural frequency of the square sandwich plate (2 :“’T“Z %) with

reinforced composite faces and functional gradient nanotubes for different temperatures obtained
the present study with the results of other researchers in Table 4 are presented (Pourmoayed et al.
2017). The ratio of length to thickness is five (a/h = 5), and the ratio of core thickness to face
thickness is two (ho/hs = 2). The volume percentage of nanotubes is equal 0.17. There is a good
agreement between the results of this study and the results of the theories expressed.

Based on the increase of volume percentages of fibers, the non-dimensional natural frequency
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Fig. 4 The effect of different distributions of carbon nanotubes on non-dimensional natural frequency

increases (Fig. 2). Variation of non-dimensional natural frequency versus the ratio of length-to-
thickness and length to width, shown in Fig. 3. It can be seen that by increasing the length-to- width
ratio, the non-dimensional natural frequency increases.

The dimensionless natural frequency for the different distributions of carbon nanotubes in the
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Fig. 7 The effect of temperature and humidity changes on the non-dimensional natural frequency of
sandwich structures

upper and lower faces of the sandwich structure is shown in Fig. 4. These distributions include
uniform shape (UD), O shape (FG-0), V shape (FG-V) and X shape (FG-X). According this shape,
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Fig. 9 The effect of moisture changes on non-dimensional natural frequency for different length to
thickness ratios

the distribution of FG-V carbon nanotubes further strengthens the sandwich structure, resulting non-
dimensional natural frequency has become more than other distributions.

The effect of core thickness on non-dimensional natural frequency can be seen in Fig. 5. Based
on the increase in the ratio of core thickness to total thickness (hc/h), the non-dimensional natural
frequency increases. This incremental trend is important in the length-to-thickness ratios of this
structure.

The influence of elastic foundation (Pasternak shear constant, kq and Winkler spring constant,
kw) on the dimensionless natural frequency of sandwich structures in Fig. 6 is shown. As can be seen
in this figure, with the elastic foundation, the structure becomes more rigid and its stiffness increases,
resulting the dimensionless natural frequency of sandwich structures increase. Also, the effect of
Winkler spring constant on the non-dimensional natural frequency is more than the effect of shear
constant.

The effect of temperature changes and humidity changes on the non-dimensional natural
frequency of sandwich structures is shown in Fig. 7. As shown in this figure, with increasing
temperature and humidity changes, the structure becomes weaker and its stiffness decreases,
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resulting non-dimensional natural frequency of sandwich structures has a decreasing trend for these
changes. Also, the decreasing trend of the non-dimensional natural frequency of this structure with
temperature changes is more than humidity changes.

The effect of different temperatures on the non-dimensional natural frequency of sandwich
structures for different length-to-thickness ratios is shown in Fig. 8. As shown in this figure, by
increasing the temperature from 300 to 700 degrees Kelvin, the dimensionless natural frequency of
the sandwich structure decreases, and this trend of dimensionless natural frequency decreases in
ratio length-to-thickness larger is important.

The effect of moisture changes on the dimensionless natural frequency of sandwich structures
for different length-to-thickness ratios is shown in Fig. 9. As shown in this figure, with increasing
of moisture ratio, the dimensionless natural frequency of the sandwich structure decreases.

The effect of the magnetic field in along thickness of the sandwich structure (H) on the non-
dimensional natural frequency of the sandwich structure for different length to thickness ratios in
Fig. 10 is shown. As it is shown in this figure, with increasing magnetic field, non-dimensional
natural frequency of the sandwich structure decreases, because by applying this field, the pressure
Lorentz forces create that cause decreases the flexibility of the structure and consequently non-
dimensional natural frequency decreases.

The effect of the viscosity of the sandwich structure (cs) on the real and imaginary dimensionless
natural frequency of the sandwich structure for different length to thickness ratios is shown in Figs.
11-12. As can be seen in these figures, with increasing viscosity of sandwich structures, on real and
imaginary dimensionless natural frequency of sandwich structure decrease.

The effect of applied voltage on the dimensionless natural frequency of sandwich structures for
different length-to-thickness ratios is shown in Fig. 13. As shown in this figure, by applying negative
voltage orientation the piezoelectric plate is such that it increases the dimensionless natural
frequency. Contrary to negative voltage, applying positive voltage reduces the dimensionless natural
frequency.

6. Conclusions

In this study, free vibration of sandwich structure with viscoelastic piezoelectric composite face
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sheets reinforced by functionally graded carbon nanotubes was presented based on an improved
higher-order sandwich panel theory. In order to be accurate, the displacement field is intended, based
on compatibility conditions in the interface of the core and the top and bottom face sheets are
considered. The nanotubes in the piezoelectric polymer composite faces have been distributed
uniformly (UD), V-shaped (FG-V), O-shaped (FG-O) and X-shaped (FG-X). The governing
equations of sandwich nano structure were obtained by Hamilton’s principle and by Navier method
of natural frequency for sandwich nano structures with simple support boundary conditions were
calculated. The results of this study can be summarized as follows:

» The dimensionless natural frequency of sandwich nanostructures with increasing volume
percent of single wall carbon nanotubes, a/b apparent coefficient, elastic foundation parameters,
applied voltage increased.

* Increasing natural frequency of sandwich nano-structures with negative voltage applied more
than positive voltage applied.

» Non dimensional natural frequency of sandwich nano-structures with increasing foundation,
magnetic field and structure damping coefficients decreased.

» For different distributions of carbon single walled nanotubes in sandwich nanostructures, FG-
V distribution and FG-O distribution have the largest and smallest dimensional natural frequencies.

» Non-dimensional natural frequency of sandwich structures with increasing temperature and
humidity changes decreased.
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Appendix A
du ou ou av v v
0 1 2 3 0 1 2
Nf:A?1 ap Blpl ap+C1pl ap+Df1 ap+Ai’2 ap+Blz’2 ap 1pZ ayp+
0v3p Oug, 9y, 0wy, 0y
Dy, 3y +A’1’3w1+ZBf3w2+A§’6< 3 +— + BY 3 + +Cl x
Uy, 0y, Jus dv,
DP : E)+Z8 P (x,y,t
( ay + ax + 16 ay + ax + 31¢) (x y )
Jdu v Ju v ou v Ju v
NP = 4P op op BP 1p 1p cP 2p 2p DP 3p 3p
xy 66( dy T ox ) Bes dy T ax )T Ces dy x| T Des dy rr
du, Ju, du, dus dvy v, v,
Mp — Bp 14 Cp 14 Dp 14 Ep 14 Bp 14 CIJ 14 Dp 14
y 12 ax + 12 ax + 12 ax + 12 ax + 22 ay + 22 ay + 22 ay + (Al)
V3, Ougy 9dvgy 0wy, 0y
E?, 3 +B§’3w1+2c§’3w2+13§’6< 3 +5, +Ch 3 + 5 + DY,

0Uyy 0V, Jusz, 0vs
Tap EP 4 Py P 4o ¢
<ay + ox + Ea dy + ox T 232,97 (63, )

du, av Ju dav Ju av ou dv
pP =P 0p 0p DP ip ip EP 2p 2p FP 3p 3p
xy 66( dy + ox * Des dy + ox * e dy + ox *+ Fes dy + ox

Appendix B

h he\* he? h he? ho\?
0 AU + ?tuu + (f) Uy + (f) Uz — Upe T+ ?Cuu - (f) Upe + (f) Uz =0 (B1)
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ht ht 2 hc hc 2
SAswor + ?Wlt + (?) Wat — Wy + 7W1c - (7) Wy =0

ow,
SAo—— o +(hb/2

8216Q%s (aw;cjb + (_ 717) a‘;/—;b + (2 ) LR ulb hyuzp + 3 (_b)z u3b> — Gy,

+ hyuy, + 3(hy/2)%us, =0

aWOc
( + houye + 3(h./2) u3c)—0
dx
Appendix C
My, t) = Z Z AT eiwt sin(nmy /b) cos(mmx/a)
m;l no=01
As(x,y,t) = Z Z AT i@t cos(ny/b) sin(mmx/a)
m;l no=01
Ag(x,y,t) = Z Z A et sin(nmy/b) cos(mmx/a)
=l il (1)
A(x,y,t) = Z 2 A ot sin(nmy/b) sin(mmx/a)
m;l n;l
Ais(x,y,t) = Z 2 AT @t cos(nmy/b) sin(mmx/a)
m;l n;l
Ae(x,y,t) = Z 2 AT eiot sin(nmy/b) cos(mmx/a)
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