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Abstract.  In this paper, the important novelty and the defining a physical phenomenon of the resent research is the 

development of nonlocal stress and strain parameters on the porous sandwich beam with functionally graded materials 

in the top and bottom face sheets. Also, various beam models including Euler-Bernoulli, Reddy and the generalized 

formulation of two-variable beam theories are obtained in this research. According to a nonlocal strain elasticity theory, 

the strain at a reference point in the body is dependent not only on the stress state at that point, but also on the stress 

state at all of the points throughout the body. Thus, the nonlocal stress-strain elasticity theory is defined that can be 

actual at micro/nano scales. It can be seen that the critical buckling load and transverse deflection of sandwich beam 

by considering both nonlocal stress-strain parameters is higher than the nonlocal stress parameter. On the other hands, 

it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the actual case. 
 

Keywords:  a nonlocal stress-strain elasticity theory; bending and buckling analysis; functionally graded 

facesheets; porous core; sandwich beam 

 
 
1. Introduction 

 
Sandwich structures are made of three layers including flexible core layer and two facesheets 

layers. These structures are used due to high strength to weight ratio in various industries including 

aerospace, automobile, mechanics and civil structures. 

The classical theory (CT) discovered in 1660. This theory stated that the stress at a reference 

point in the body is dependent on the strain state at that point. 

The nonlocal elasticity theory (the nonlocal stress elasticity theory) was first presented by 

Eringen’s (1972) & (1983). According to nonlocal stress elasticity theory, the stress at a reference 

point in the body is dependent not only on the strain state at that point, but also on the strain state at 

all of the points throughout the body. Polizzotto (2001) presented nonlocal elasticity and related 

variational principles. Based on nonlocal elasticity theory (NET), Reddy (2007) considered bending, 

buckling and vibration of various beam theories including the Euler–Bernoulli, Timoshenko, Reddy, 

Levinson-Reddy. Yang et al. (2008) illustrated pull-in instability of nano-switches subjected to an 

electrostatic force due to an applied voltage using NET. Ghorbanpour et al. (2009) considered 
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buckling analysis of a double-walled carbon nanotube embedded in an elastic medium using the 

energy method. Pradhan (2009) studied buckling of single layer graphene sheet based on nonlocal 

elasticity and higher order shear deformation theory. Murmu and Adhikari (2010) employed 

transverse vibration of double-nanobeam-systems based on NET. Mohammadimehr et al. (2010) 

investigated torsional buckling of a double-walled carbon nanotubes (DWCNTs) embedded on 

Pasternak foundations using NET. Narendar (2011) presented buckling analysis of micro-/nano-

scale plates based on two-variable refined plate theory incorporating nonlocal scale effects. Wang 

and Wang (2011) studied vibration of nanoscale plates with surface energy via nonlocal elasticity. 

Zenkour and Sobhy (2013) illustrated thermal buckling of nano-plates lying on Pasternak elastic 

substrate medium using NET. Eltaher et al. (2016) considered a review on nonlocal elastic models 

for bending, buckling, vibrations, and wave propagation of nanoscale beams. 

There are various theories to consider size dependent effect at micro/nano scales. One of 

important size dependent effect is a modified couple stress theory (MCST) that proposed by Yang 

et al. (2002) for first time. Jomehzadeh et al. (2011) considered the size-dependent vibration analysis 

of micro-plates using MCST. They investigated the effect of material length scale parameter on the 

natural frequency. Al-Basyouni et al. (2015) presented the size dependent effect on the bending and 

vibration analysis of functionally graded micro beams using MCST and neutral surface position. 

Babaei and Eslami (2019) depicted thermally induced large deflection of FGM shallow micro-

arches with integrated surface piezoelectric layers based on MCST. Gao (2015) studied a new 

Timoshenko beam model incorporating microstructure and surface energy effects. 

The other size dependent effect such as modified strain gradient theory (MSGT) (proposed by 

Lam et al. (2003) for first time; Ansari et al. (2013), Thai et al. (2018), Li et al. (2020)), most general 

strain gradient theory (MGSGT) (Ansari et al. 2013, Shooshtari and Razavi 2015) and nonlocal 

strain gradient theory (NSGT) (Ebrahimi et al. 2016, Karami and Shahsavari 2020, Ghayesh et al. 

2020). Yazdani et al. (2019) considered free vibration of Cooper-Naghdi micro saturated porous 

sandwich cylindrical shells with reinforced CNT face sheets under combined loadings including 

magneto-hydro-thermo-mechanical loadings. Alavi and Eipakchi (2019) investigated geometry and 

load effects on transient response of a VFGM annular plate using an analytical approach. Ebrahimi 

et al. (2019) presented wave dispersion characteristics of porous graphene platelet-reinforced 

composite shells. Mohammadimehr et al. (2018) illustrated buckling and vibration analyses of 

MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs 

with isotropic foam & flexible transversely orthotropic cores. In the other work, Mohammadimehr 

and Alimirzaei (2016) presented nonlinear static and vibration analysis of Euler-Bernoulli composite 

beam model reinforced by FG-SWCNT with initial geometrical imperfection using FEM. Yazdani 

and Mohammadimehr (2019) showed double bonded Cooper-Naghdi micro sandwich cylindrical 

shells with porous core and CNTRC face sheets: Wave propagation solution. Bendenia et al. (2020) 

presented deflections, stresses and free vibration studies of FG-CNT reinforced sandwich plates 

resting on Pasternak elastic foundation. Daikh et al. (2020) considered static bending of multilayered 

carbon nanotube-reinforced composite plates. Altekin (2020) investigated combined effects of 

material properties and boundary conditions on the large deflection bending analysis of circular 

plates on a nonlinear elastic foundation. Nejadi and Mohammadimehr (2020) illustrated analysis of 

a functionally graded nanocomposite sandwich beam considering porosity distribution on variable 

elastic foundation using DQM: Buckling and vibration behaviors. 

Rahi et al. (2021) presented a simplified numerical method for nonlocal static and dynamic 

analysis of a graphene nanoplate. Canbay et al. (2021) studied thermostructural shape memory effect 

observations of ductile Cu-Al-Mn smart alloy. Rabia et al. (2020) considered predictions of the 
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maximum plate end stresses of imperfect FRP strengthened RC beams: study and analysis. 

Namayandeh et al. (2020) studied temperature and thermal stress distributions in a hollow circular 

cylinder composed of anisotropic and isotropic materials. Hadji and Bernard (2020) investigated 

bending and free vibration analysis of functionally graded beams on elastic foundations with 

analytical validation. 

Some researchers worked about nonlinear buckling and dynamic of porous FGM plates and shells 

as following references (Duc 2013, 2014, 2016a, b, Duc et al. 2017a, b, 2018a, b, Cong et al. 2018). 

Also, Duc and Quan (2015) considered the nonlinear dynamic analysis of imperfect FGM double 

curved thin shallow shells with temperature-dependent properties on elastic foundation. Moreover, 

Duc et al. (2016c) illustrated the nonlinear thermal dynamic response of shear deformable FGM 

plates on elastic foundations. In the other work, they (Duc et al. 2017c) studied the nonlinear 

dynamic response and vibration of imperfect shear deformable functionally graded plates subjected 

to blast and thermal loads. Also, Anh et al. (2015) presented the nonlinear buckling analysis of thin 

FGM annular spherical shells on elastic foundations under external pressure and thermal loads. 

Some researchers worked about numerical methods to solve Partial Differential Equations (PDEs) 

as follows 

Anitescu et al. (2019) and Guo et al. (2019) worked about artificial and deep neural networks 

that are a topic of great interest in the machine and deep learning community due to their ability to 

solve very difficult problems, respectively. Thus, Samaniego et al. (2020) presented an energy 

approach to the solution of partial differential equations in computational mechanics via machine 

learning including concepts, implementation and applications. Also, Nguyen-Thanh (2020) 

presented a deep energy method for finite deformation hyper-elasticity. Ren et al. (2020a, b) 

presented a higher order nonlocal operator method for solving partial differential equations. 

The uncertainties method consists of three ingredients: (1) sampling method, (2) surrogate 

models, (3) sensitivity analysis (SA) method are usually used for data collection, for example, to 

measure temperature and pressure, Vu-Bac et al. (2016) investigated this effect on the efficiency of 

thousands of data devices for temperature and pressure. It has been said that using the available 

methods to check the uncertainty of data accuracy, the degree of uncertainty and the effect of each 

of the parameters on the output of the system is also examined. However, in the present work, the 

input data for finding system frequencies has not been measured by the authors and has been 

considered as a nominal value in the analysis (as well as other references from the same nominal 

values for their analysis and its effect on behavior of the system is used). The present work also 

provides a theoretical method for examining the behavior of the system, and the construction process 

is not performed to address the uncertainty issues regarding the dimensional measurements of the 

structure. Therefore, in the end, it can be said that due to the theoretical nature of the analysis and 

the lack of measured data, it is not possible to check the uncertainty. 

Nguyen et al. (2021) presented a size-dependent isogeometric approach for vibration analysis of 

FG piezoelectric porous microplates using modified strain gradient theory. Also, they (Duc et al. 

2017a) considered a novel three-variable shear deformation plate formulation based on Theory and 

Isogeometric implementation. In the other work, they (Duc et al. 2017b) illustrated NURBS-based 

postbuckling analysis of functionally graded carbon nanotube-reinforced composite shells. 

In this research, bending and buckling analyses of a sandwich beam theory with various 

distributions of porous core and functionally graded facesheets is investigated based on a nonlocal 

stress-strain elasticity theory. In this paper, the important novelty and the defining a physical 

phenomenon of the resent research is the development of nonlocal stress and strain parameters on 

the porous sandwich beam with functionally graded materials in the top and bottom face sheets. 
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Also, various beam models including Euler-Bernoulli, Reddy and the generalized formulation of 

two-variable beam theory are obtained in this research. It is noted that by considering only nonlocal 

stress parameter ((𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠 ), the stiffness of structures decreases, also if you consider only 

nonlocal strain parameter ( (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛 ) the stiffness of structures increases, but when both 

(𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠  and (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛  consider the stiffness of structures increases while the value of 

stiffness in this case ((𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠 and (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛 simultaneously) is lower than nonlocal strain 

parameter ((𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛) only that can be more actual at micro/nano scales. 

 

 

2. A nonlocal stress-strain elasticity theory 
 

The previous nonlocal elasticity theory (the nonlocal stress elasticity theory) was first presented 

by Eringen (1983). According to nonlocal stress elasticity theory, the stress at a reference point in 

the body is dependent not only on the strain state at that point, but also on the strain state at all of 

the points throughout the body. Thus, the constitutive equation of the nonlocal stress elasticity theory 

can be written as follows Eringen (1983) 

(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2)𝜎𝑥𝑥 = (𝜆 + 2𝜇)𝜀𝑥𝑥  (1) 

where 𝜎𝑖𝑗 and 𝜀𝑖𝑗 are second order stress and strain tensors, respectively. 𝜆 and 𝜇 are Lame’s 

constants. Moreover, (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠  denotes the small scale effect based on the nonlocal stress 

elasticity theory. 𝛿𝑖𝑗 is Kronecker delta. 

Based on a nonlocal strain elasticity theory, the constitutive equation of a nonlocal strain 

elasticity theory can be stated as follows 

𝜎𝑥𝑥 = (1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛
2 𝛻2)(𝜆 + 2𝜇)𝜀𝑥𝑥  (2) 

Based on superposition principle for linear elastic theory, we can combine Eqs. (1) and (2), thus 

the nonlocal stress-strain elasticity theory can be considered as follows 

(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2)𝜎𝑥𝑥 = (1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛

2 𝛻2)(𝜆 + 2𝜇)𝜀𝑥𝑥  (3) 

where the Lame’s constant are defined as follows 

𝜆 =
𝐸𝜐

(1+𝜐)(1−2𝜐)
, 𝜇 =

𝐸

2(1+𝜐)
  (4) 

It is shown in Eq. (3) that the Euler-Bernoulli beam model based on the simplified higher-order 

nonlocal strain gradient theory could be reduced to either the common strain gradient model of 

Aifantis (1992) by taking (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠 to approach zero, or the nonlocal stress model of Eringen 

(1983) by taking (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛 to approach zero. It could also be reduced to the classical model when 

both (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠 and (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛 vanish. Hence, this model (higher-order nonlocal strain gradient 

theory) bridges the nonlocal stress theory of Eringen (1972, 1983, 2002) and the strain gradient 

theory of Mindlin (1965), Aifantis (1992), etc. Thus, with the above noticeable, the advantage of 

this model becomes the combinations of the two size dependent at nano/micro scales. It is noted that 

by considering only nonlocal stress parameter ((𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠), the stiffness of structures decreases, 

also if you consider only nonlocal strain parameter ((𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛) the stiffness of structures increases, 

but when both (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠 and (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛 consider the stiffness of structures increases while the 

value of stiffness in this case ((𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠 and (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛 simultaneously) is lower than nonlocal 

strain parameter ((𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛) only that can be more actual at micro/nano scales. The disadvantage 
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Fig. 1 The schematic view of a sandwich beam with various distributions of porous core and functionally 

graded top and bottom facesheet layers 

 

 

of this model is that the volume of the equations becomes more and more complex, while the results 

of this model become closer to actual. 

In Eq. (3), with combinations of two concepts (Eqs. (1) and (2)), the nonlocal stress-strain 

elasticity theory is defined that can be actual in micro/nano scales. 

The limitations and assumptions of the present model have been stated as follows 

(1) The nonlocal stress and strain parameters has been used to consider the size-dependent effect 

on the governing equation of equilibrium of the beam. 

(2) The constitutive equations of this work are assumed linear in the elastic region. 

(3) It assumed that the equations of the equilibrium become linear. 

(4) The sandwich cylindrical shell is assumed to be as a continuous body that no delamination 

occurs between the layers of the sandwich shell during movement. 

(5) There are no debonding between functionally graded materials. 

Fig. 1 shows a sandwich beam with various distributions of porous core and functionally graded 

top and bottom facesheet layers. ht and hb, illustrate the thickness of top and bottom facesheet layers. 

Also, hc show the thickness of porous core. 

 

2.1 Euler-Bernoulli beam model 
 

The displacement fields for Euler-Bernoulli beam theory are considered as follows 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥) − 𝑧
𝜕𝑤(𝑥)

𝜕𝑥
  

𝑣(𝑥, 𝑦, 𝑧) = 0  

𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥)  

(5) 

where u, v, w denote the displacements in x, y, and z directions, respectively. 

Using Eq. (5), the kinematic equations for Euler-Bernoulli beam are written as 
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𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤

𝜕𝑥2   (6) 

By employing Eq. (6), the variation of strain energy can be written as follows 

𝛿𝑈 = ∫ (−
𝜕𝑁𝑥

𝜕𝑥
𝛿𝑢0(𝑥) −

𝜕2𝑀𝑥

𝜕𝑥2 𝛿𝑤(𝑥))𝑑𝐴
𝐴

  (7a) 

where 

𝑁𝑥 = ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑑𝑧 = ∫ 𝜎𝑥𝑥)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑡

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

𝑀𝑥 = ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑧𝑑𝑧 = ∫ 𝜎𝑥𝑥)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑧𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐𝑧

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑡𝑧

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

(7b) 

Then the variational method for the external work due to elastic foundation, transverse loadings, 

and axial force can be considered as follows 

𝛿𝑊𝑒𝑥𝑡 = − ∫ {(+𝑁𝑥0
𝜕2𝑤(𝑥)

𝜕𝑥2 − 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝑞(𝑥))𝛿𝑤(𝑥) + 𝐹𝑎𝑥𝑖𝑎𝑙(𝑥)𝛿𝑢0(𝑥)}𝑑𝐴
𝐴

  (8) 

where 𝑁𝑥0 , 𝑞(𝑥) , 𝐹𝑎𝑥𝑖𝑎𝑙(𝑥)  and 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐  are axial buckling load, axial loadings, transverse 

loadings, and elastic foundation, respectively. 

Based on the total potential energy, we have 

𝛿∏ = 0 ⇒ 𝛿𝑈 + 𝛿𝑊𝑒𝑥𝑡 = 0  (9) 

Substituting Eqs. (7a), (8) into Eq. (9) yields the following equations of equilibrium for sandwich 

beam theory 

𝛿𝑢0(𝑥): −
𝜕𝑁𝑥

𝜕𝑥
= 𝐹𝑎𝑥𝑖𝑎𝑙  (10a) 

𝛿𝑤(𝑥):
𝜕2𝑀𝑥

𝜕𝑥2 + 𝑁𝑥0
𝜕2𝑤(𝑥)

𝜕𝑥2 − 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝑞(𝑥) = 0  (10b) 

By substituting Eq. (3) into Eq. (7b) and based on a nonlocal stress-strain elasticity theory, we 

have 

(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2)𝑁𝑥 = (1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛

2 𝛻2) ∫ (𝜆 + 2𝜇
0.5𝐻

−0.5𝐻
) (

𝜕𝑢0(𝑥)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥)

𝜕𝑥2 ) 𝑑𝑧  

(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2)𝑀𝑥 = (1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛

2 𝛻2) ∫ (𝜆 + 2𝜇
0.5𝐻

−0.5𝐻
) (

𝜕𝑢0(𝑥)

𝜕𝑥
− 𝑧

𝜕2𝑤(𝑥)

𝜕𝑥2 ) 𝑧𝑑𝑧  

(11a) 

where 

(𝑄11

(0)

, 𝑄11

(1)

, 𝑄11

(2)

) = ∫ (𝜆 + 2𝜇)(1, 𝑧, 𝑧20.5𝐻

−0.5𝐻
)𝑑𝑧  (11b) 

Based on a stress-strain elasticity theory, and substituting Eq. (11b) into Eq. (11a) yields the 

following equation 

(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2)𝑁𝑥 = (1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛

2 𝛻2) (𝑄11

(0)
𝜕𝑢0(𝑥)

𝜕𝑥
− 𝑄11

(1)
𝜕2𝑤(𝑥)

𝜕𝑥2 )  

(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2)𝑀𝑥 = (1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛

2 𝛻2) (𝑄11

(1) 𝜕𝑢0(𝑥)

𝜕𝑥
− 𝑄11

(2) 𝜕2𝑤(𝑥)

𝜕𝑥2
) 

(11c) 

284



 

 

 

 

 

 

Buckling and bending analyses of a sandwich beam based on nonlocal stress-strain … 

Based on a nonlocal stress-strain elasticity theory, the governing equations of equilibrium for 

sandwich beam theory are derived as follows 

𝛿𝑢0(𝑥): −(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛
2 𝛻2) (𝑄11

(0)
𝜕2𝑢0(𝑥)

𝜕𝑥2 − 𝑄11

(1)
𝜕3𝑤(𝑥)

𝜕𝑥3 )  

= (1 − (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2)𝐹𝑎𝑥𝑖𝑎𝑙  

(12a) 

𝛿𝑤(𝑥): −(1 − (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛
2 𝛻2) (𝑄11

(1)
𝜕3𝑢0(𝑥)

𝜕𝑥3 − 𝑄11

(2)
𝜕4𝑤(𝑥)

𝜕𝑥4 ) = (1 −

(𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛻2) (𝑁𝑥0

𝜕2𝑤(𝑥)

𝜕𝑥2 − 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 + 𝑞(𝑥))  

(12b) 

where 

𝐹𝑎𝑥𝑖𝑎𝑙(𝑥) = ∑ 𝐹𝑚
∞
𝑚=1 𝑐𝑜𝑠 (

𝑚𝜋𝑥

𝐿
) ,  𝑞(𝑥) = ∑ 𝑞𝑚

∞
𝑚=1 𝑠𝑖𝑛 (

𝑚𝜋𝑥

𝐿
)  

𝑁𝑥0 = −𝑃𝑐𝑟  

𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 = 𝐾𝑤𝑤(𝑥) − 𝐾𝐺𝛻2𝑤(𝑥)  

(12c) 

The displacements for Euler-Bernoulli sandwich beam theory can define as follows 

𝑢0(𝑥) = ∑ 𝑈𝑚 𝑐𝑜𝑠 (
𝑚𝜋𝑥

𝐿
)∞

𝑚=1   

𝑤(𝑥) = ∑ 𝑊𝑚 𝑠𝑖𝑛 (
𝑚𝜋𝑥

𝐿
)∞

𝑚=1   

(13) 

By substituting Eq. (13) into Eqs. (12a) and (12b), the matrix form for sandwich beam theory is 

obtained as 

([𝐾] + [𝐵]){𝑋} = {𝐹}  (14) 

where the stiffness and buckling matrices and force vector are obtained as follows 

[𝐾] = (1 + (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛
2 𝛼2) [

𝑄
(0)

11𝛼2 − 𝑄
(1)

11𝛼3

− 𝑄
(1)

11𝛼3 𝑄
(2)

11𝛼4

]  (14) 

[𝐵] = (1 + (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛼2) [

0 0
0 𝐾𝑤 + 𝐾𝐺𝛼2 − 𝑃𝑐𝑟𝛼2]  

{𝐹} = (1 + (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠
2 𝛼2) {

𝐹𝑚

𝑞𝑚
}  

𝛼 =
𝑚𝜋

𝐿
  

{𝑋} = {
𝑈𝑚

𝑊𝑚
}  

(15) 

 

2.2 Reddy beam model 
 

The displacement fields for Reddy beam model are considered as follows 
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𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥) + 𝑧𝜓(𝑥) −
4𝑧3

3𝐻2 (𝜓(𝑥) +
𝜕𝑤(𝑥)

𝜕𝑥
)  

𝑣(𝑥, 𝑦, 𝑧) = 0  
𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥)  

(16) 

Using Eq. (16), the kinematic equations for Reddy beam are written as 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
+ 𝑧

𝜕𝜓(𝑥)

𝜕𝑥
−

4𝑧3

3ℎ
2 (

𝜕𝜓(𝑥)

𝜕𝑥
+

𝜕2𝑤(𝑥)

𝜕𝑥2 )  

𝛾𝑥𝑧 = +𝜓 −
4𝑧2

ℎ
2 (𝜓 +

𝜕𝑤

𝜕𝑥
) +

𝜕𝑤

𝜕𝑥
  

(17) 

Using Eq. (17), the variation of strain energy can be written as follows 

𝛿𝑈 = ∫
(−

𝜕𝑁𝑥

𝜕𝑥
𝛿𝑢0(𝑥) −

𝜕𝑀𝑥
(1)

𝜕𝑥
𝛿𝜓(𝑥) +

𝜕𝑀𝑥
(3)

𝜕𝑥
𝛿𝜓(𝑥) −

𝜕2𝑀𝑥
(3)

𝜕𝑥2 𝛿𝑤(𝑥)

+𝑄𝑥
(0)

𝛿𝜓(𝑥) − 𝑄𝑥
(2)

𝛿𝜓(𝑥) +
𝜕𝑄𝑥

(2)

𝜕𝑥
𝛿𝑤(𝑥) −

𝜕𝑄𝑥
(0)

𝜕𝑥
𝛿𝑤(𝑥)) 𝑑𝐴

𝐴
  (18a) 

where 

𝑁𝑥 = ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑑𝑧 = ∫ 𝜎𝑥𝑥)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑡

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

𝑀𝑥
(1)

= ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑧𝑑𝑧 = ∫ 𝜎𝑥𝑥)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑧𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐𝑧

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑡𝑧

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

 

 
 

𝑀𝑥
(3)

=
4

3𝐻2 ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑧3𝑑𝑧 =

4

3𝐻2 (∫ 𝜎𝑥𝑥)𝑏
−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑧3𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐𝑧30.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 +

∫ 𝜎𝑥𝑥)𝑡𝑧30.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧)  

𝑄𝑥
(0)

= ∫ 𝜏𝑥𝑧
0.5𝐻

−0.5𝐻
𝑑𝑧 = ∫ 𝜏𝑥𝑧)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑑𝑧 + ∫ 𝜏𝑥𝑧)𝑐

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜏𝑥𝑧)𝑡

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

𝑄𝑥
(2)

=
4

𝐻2 ∫ 𝜏𝑥𝑧𝑧20.5𝐻

−0.5𝐻
𝑑𝑧 =

4

𝐻2 (∫ 𝜏𝑥𝑧)𝑏𝑧2−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑑𝑧 + ∫ 𝜏𝑥𝑧)𝑐

0.5ℎ𝑐

−0.5ℎ𝑐
𝑧2𝑑𝑧 +

∫ 𝜏𝑥𝑧)𝑡
0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑧2𝑑𝑧)  

(18b) 

Substituting Eqs. (18a), (8) into Eq. (9) yields the following equations of equilibrium for 

sandwich beam theory 

𝛿𝑢0(𝑥): −
𝜕𝑁𝑥

𝜕𝑥
= 𝐹𝑎𝑥𝑖𝑎𝑙  (19a) 

𝛿𝑤(𝑥): −
𝜕2𝑀𝑥

(3)

𝜕𝑥2 +
𝜕𝑄𝑥

(2)

𝜕𝑥
−

𝜕𝑄𝑥
(0)

𝜕𝑥
− 𝑁𝑥0

𝜕2𝑤(𝑥)

𝜕𝑥2 + 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 − 𝑞(𝑥) = 0  (19b) 

𝛿𝜓(𝑥): −
𝜕𝑀𝑥

(1)

𝜕𝑥
+

𝜕𝑀𝑥
(3)

𝜕𝑥
+ 𝑄𝑥

(0)
− 𝑄𝑥

(2)
= 0  (19c) 

Based on Navier’s type solution, the displacements fields can be considered as follows 

𝑢0(𝑥) = ∑ 𝑈𝑚
∞
𝑚=1 𝑐𝑜𝑠

𝑚𝜋𝑥

𝐿
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𝜓(𝑥) = ∑ 𝜓𝑚
∞
𝑚=1 𝑐𝑜𝑠

𝑚𝜋𝑥

𝐿
  

𝑤(𝑥) = ∑ 𝑊𝑚
∞
𝑚=1 𝑠𝑖𝑛

𝑚𝜋𝑥

𝐿
  

(20) 

By substituting Eq. (20) into Eqs. (19), the matrix form for sandwich Reddy beam theory is 

obtained as 

([𝐾] + [𝐵]){𝑋} = {𝐹} (21) 

where K, B and F are the stiffness and buckling matrices and force vector. Also, X vector is defined 

as follows 

{𝑋} = {

𝑈𝑚

𝜓𝑚

𝑊𝑚

}  (22) 

 
2.3 The generalized formulation of two-variable beam theory 

 
The displacement fields for the generalized formulation of two-variable beam theory are 

considered as follows (Nguyen et al. 2017a or b) 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥) − 𝑧
𝜕𝑤𝑏

𝜕𝑥
− 𝛼

4𝑧3

3𝐻2

𝜕

𝜕𝑥
(

𝜕2𝑤𝑏

𝜕𝑥2 )  

𝑣(𝑥, 𝑦, 𝑧) = 0  

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥) + 𝛼
𝜕2𝑤𝑏(𝑥)

𝜕𝑥2   

𝛼 =
𝑧0 ∫ 𝑧

𝐸(𝑧)

1−𝜐2𝑑𝑧−∫ 𝑧2 𝐸(𝑧)

1−𝜐2𝑑𝑧
𝐻/2

−𝐻/2

𝐻/2

−𝐻/2

∫ (1−4
𝑧2

𝐻2)
𝐸(𝑧)

(2(1+𝜐))
𝑑𝑧

𝐻/2

−𝐻/2

  

(23a) 

where 𝑧0 indicates the distance of neutral plane from the mid-plane of FG plate as follows 

𝑧0 =
∫ 𝑧

𝐸(𝑧)

1−𝜐2𝑑𝑧
𝐻/2

−𝐻/2

∫
𝐸(𝑧)

1−𝜐2𝑑𝑧
𝐻/2

−𝐻/2

  (23b) 

Using Eq. (23a), the kinematic equations for the generalized formulation of two-variable beam 

theory are written as 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕𝑢0

𝜕𝑥
− 𝑧

𝜕2𝑤𝑏

𝜕𝑥2 −
4𝑧3

3ℎ
2 𝛼

𝜕2

𝜕𝑥2 (
𝜕2𝑤𝑏

𝜕𝑥2 )  

𝛾𝑥𝑧 = −
4𝑧2

ℎ
2 𝛼

𝜕

𝜕𝑥
(

𝜕2𝑤𝑏

𝜕𝑥2 ) + 𝛼
𝜕3𝑤𝑏

𝜕𝑥3   
(24) 

Using Eq. (24), the variation of strain energy can be written as follows 

𝛿𝑈 = ∫
(−

𝜕𝑁𝑥

𝜕𝑥
𝛿𝑢0(𝑥) −

𝜕2𝑀𝑥
(1)

𝜕𝑥2 𝛿𝑤𝑏(𝑥) − 𝛼
𝜕4𝑀𝑥

(3)

𝜕𝑥4 𝛿𝑤𝑏(𝑥)

+𝛼
𝜕3𝑄𝑥

(2)

𝜕𝑥3 𝛿𝑤𝑏(𝑥) − 𝛼
𝜕3𝑄𝑥

(0)

𝜕𝑥3 𝛿𝑤𝑏(𝑥)) 𝑑𝐴
𝐴

  (25a) 

where 

287



 

 

 

 

 

 

Mehdi Mohammadimehr 

𝑁𝑥 = ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑑𝑧 = ∫ 𝜎𝑥𝑥)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑡

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

𝑀𝑥
(1)

= ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑧𝑑𝑧 = ∫ 𝜎𝑥𝑥)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑧𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐𝑧

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑡𝑧

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

𝑀𝑥
(3)

=
4

3𝐻2 ∫ 𝜎𝑥𝑥
0.5𝐻

−0.5𝐻
𝑧3𝑑𝑧 =

4

3𝐻2 (∫ 𝜎𝑥𝑥)𝑏
−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑧3𝑑𝑧 + ∫ 𝜎𝑥𝑥)𝑐𝑧30.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 +

∫ 𝜎𝑥𝑥)𝑡𝑧30.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧)  

𝑄𝑥
(0)

= ∫ 𝜏𝑥𝑧
0.5𝐻

−0.5𝐻
𝑑𝑧 = ∫ 𝜏𝑥𝑧)𝑏

−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑑𝑧 + ∫ 𝜏𝑥𝑧)𝑐

0.5ℎ𝑐

−0.5ℎ𝑐
𝑑𝑧 + ∫ 𝜏𝑥𝑧)𝑡

0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑑𝑧  

𝑄𝑥
(2)

=
4

𝐻2 ∫ 𝜏𝑥𝑧𝑧20.5𝐻

−0.5𝐻
𝑑𝑧 =

4

𝐻2 (∫ 𝜏𝑥𝑧)𝑏𝑧2−0.5ℎ𝑐

−0.5ℎ𝑐−ℎ𝑏
𝑑𝑧 + ∫ 𝜏𝑥𝑧)𝑐

0.5ℎ𝑐

−0.5ℎ𝑐
𝑧2𝑑𝑧 +

∫ 𝜏𝑥𝑧)𝑡
0.5ℎ𝑐+ℎ𝑡

0.5ℎ𝑐
𝑧2𝑑𝑧)  

(25b) 

Substituting Eqs. (25a), (8) into Eq. (9) yields the following equations of equilibrium for 

sandwich beam theory 

𝛿𝑢0(𝑥): −
𝜕𝑁𝑥

𝜕𝑥
= 𝐹𝑎𝑥𝑖𝑎𝑙  (26a) 

𝛿𝑤𝑏(𝑥): −
𝜕2𝑀𝑥

(1)

𝜕𝑥2 − 𝛼
𝜕4𝑀𝑥

(3)

𝜕𝑥4 + 𝛼
𝜕3𝑄𝑥

(2)

𝜕𝑥3 − 𝛼
𝜕3𝑄𝑥

(0)

𝜕𝑥3   

−𝑁𝑥0
𝜕2𝑤(𝑥)

𝜕𝑥2 + 𝐹𝑒𝑙𝑎𝑠𝑡𝑖𝑐 − 𝑞(𝑥) = 0  

(26b) 

Based on Navier’s type solution, the displacements fields can be considered as follows 

𝑢0(𝑥) = ∑ 𝑈𝑚
∞
𝑚=1 𝑐𝑜𝑠

𝑚𝜋𝑥

𝐿
  

𝑤𝑏(𝑥) = ∑ 𝑊𝑚
∞
𝑚=1 𝑠𝑖𝑛

𝑚𝜋𝑥

𝐿
  

(27) 

By substituting Eq. (27) into Eqs. (26), the matrix form for sandwich Reddy beam theory is 

obtained as 

([𝐾] + [𝐵]){𝑋} = {𝐹}  (28) 

where K, B and F are the stiffness and buckling matrices and force vector, and X vector is defined 

as follows 

{𝑋} = {
𝑈𝑚

𝑊𝑚
}  (29) 

 

2.4 Young modulus for core and face sheets layers 
 

The Young’s modulus and density of porous core for two types of different distributions is 

defined as follows (Chen et al. (2017)) 

𝐸𝑐 = 𝐸0𝑐 (1 − 𝑒0cos (
𝜋𝑧

2ℎ
𝑐

+
𝜋

4
))

𝜌𝑐 = 𝜌0𝑐 (1 − 𝑒𝑚cos (
𝜋𝑧

2ℎ
𝑐

+
𝜋

4
))

Asymmetric type  (30a) 
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𝐸𝑐 = 𝐸0𝑐 (1 − 𝑒0cos (
𝜋𝑧

ℎ
𝑐

))

𝜌𝑐 = 𝜌0𝑐 (1 − 𝑒𝑚cos (
𝜋𝑧

ℎ
𝑐

))

𝑒𝑚 = 1 − √1 − 𝑒0

Symmetric type  (30b) 

Based on functionally graded material properties, the Young’s modulus for top and bottom 

facesheets of sandwich beam are written as 

𝐸11
𝑡 = 𝐸𝐴𝑙 + (𝐸𝑠𝑡 − 𝐸𝐴𝑙) × (

1

2
+

𝑧𝑡

ℎ
𝑡

)
𝑛

  

𝐸11
𝑏 = 𝐸𝐴𝑙 + (𝐸𝑠𝑡 − 𝐸𝐴𝑙) × (

1

2
+

𝑧𝑏

ℎ
𝑏

)
𝑛

  

(31) 

where n is the power law index. 

 

 

3. Numerical results and discussions 
 

In this article, a nonlocal stress-strain elasticity theory on the bending and buckling analysis of 

sandwich Euler-Bernoulli beam theory with porous core and functionally graded facesheets is 

considered. 

The mechanical and geometrical parameters for sandwich beam with porous cores and 

functionally graded facesheets are considered in Table 1. 

But because short time in revised (two week) and suggest the reviewer’s to add Reddy and the 

generalized formulation of two-variable beam theories, thus I obtain only the formulation, I could 

not plot and compared Euler-Bernoulli, Reddy and the generalized formulation of two-variable 

beam theories. Thus, all figures plot only for Euler-Bernoulli beam theory. Figs. 2 and 3 illustrate 

the critical buckling load versus core thickness to total thickness ratio (hc/H) for different values of 

nonlocal strain parameter ((e0a)strain) and nonlocal stress parameter ((e0a)stress) based on a nonlocal 

strain elasticity theory, nonlocal stress elasticity theory (Eringen’s theory), respectively. It is seen 

that with increasing of the thickness ratio, the critical buckling load decreases; while the transverse 

deflection increases. It can be seen that with increasing of (e0a)strain, the critical buckling load 

increases because with increasing this parameter, the stiffness of sandwich beam increases; while, 

the transverse deflection of sandwich beam decreases. Also, it can be seen from Fig. 3 that it is vice 

 
 

Table 1 The mechanical and geometrical parameters for sandwich beam 

The geometric and loadings of sandwich beam 
𝐻 = 10 𝜇𝑚,   ℎ𝑐 = 0.8 𝐻,    𝑚 = 1, 

𝑞 = 𝐹𝑎𝑥𝑖𝑎𝑙 = −10 𝐾𝑁/𝑚 

The properties of facesheets layers 
𝐸𝐴𝑙 = 70 𝐺𝑃𝑎,   𝐸𝑠𝑡 = 200 𝐺𝑃𝑎, 
𝑛 = 2;   𝜐𝐴𝑙 = 0.33,   𝜐𝑠𝑡 = 0.3, 

The properties of core 𝐸0𝑐 = 120 𝐺𝑃𝑎,   𝜐𝑐 = 0.34,   𝑒0 = 0.3, 

Nonlocal stress-strain parameters (𝑒0𝑎)𝑠𝑡𝑟𝑎𝑖𝑛 = 1 𝜇𝑚,   (𝑒0𝑎)𝑠𝑡𝑟𝑒𝑠𝑠 = 1 𝜇𝑚 

Elastic foundation parameters 𝐾𝑤 = 1 × 106 𝑁/𝑚3,   𝐾𝐺 = 1000 𝑁/𝑚 

289



 

 

 

 

 

 

Mehdi Mohammadimehr 

 

(a) 

 

(b) 

Fig. 2 The effect of nonlocal strain parameter on (a) Critical buckling load and (b) Transverse deflection of 

sandwich beam 

 

 

versa for (e0a)stress. It is noted that the nonlocal strain parameter leads to increase the stiffness of 

structures; while, the nonlocal stress parameter leads to enhance the softness of structures. 

The effect of nonlocal both stress and strain parameters on (a) critical buckling load (b) transverse 

deflection of sandwich Euler-Bernoulli beam theory is shown in Fig. 4. Based on a nonlocal stress-

strain elasticity theory. It is concluded that with an increase in the nonlocal strain parameter, the 

critical buckling load increases; while it is vice versa for nonlocal stress elasticity, because the 

stiffness of sandwich beam enhances with an increase in the nonlocal strain parameter; in which, 

the nonlocal stress parameter leads to reduce the stiffness of structures at micro/nano scale. It is 
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(a) 

 

(b) 

Fig. 3 The effect of nonlocal stress parameter on (a) Critical buckling load and (b) Transverse deflection of 

sandwich beam 

 

 

seen from Fig. 4 that the critical buckling load and transverse deflection of sandwich beam by 

considering both nonlocal stress and nonlocal strain parameters is higher than the nonlocal stress 

parameter only. On the other hands, it is noted that by considering the nonlocal stress-strain 

parameters simultaneously becomes the actual case. 

Fig. 5 illustrates the effect of power law index (n) on (a) critical buckling load (b) transverse 

deflection of sandwich beam based on a nonlocal stress-strain elasticity theory. It is seen that with 

increasing of power law index, the stiffness of micro sandwich beam decreases, then it leads to 

decrease the critical buckling load and increase the transverse deflection of sandwich beam. On the 

291



 

 

 

 

 

 

Mehdi Mohammadimehr 

 

(a) 

 

(b) 

Fig. 4 The effect of nonlocal both stress and strain parameters on (a) Critical buckling load and (b) Transverse 

deflection of sandwich beamy 

 

 

other hands, with increasing of power law index, the flexibility of sandwich structures increases. 

 

 

4. Conclusions 
 

In this paper, the important novelty and the defining a physical phenomenon of the resent research 

is the development of nonlocal stress and strain parameters on the porous sandwich beam with 

functionally graded materials in the top and bottom face sheets. Also, various beam models including  
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(a) 

 

(b) 

Fig. 5 The effect of power law index on (a) Critical buckling load and (b) Transverse deflection of sandwich 

beam 

 

 

Euler-Bernoulli, Reddy and the generalized formulation of two-variable beam theories are 

investigated in this research. It is seen that with an increase in the nonlocal strain parameter, the 

critical buckling load increases; while it is vice versa for nonlocal stress elasticity, because the 

stiffness of sandwich beam enhances with an increase in the nonlocal strain parameter; in which, the 

nonlocal stress parameter leads to reduce the stiffness of structures at micro/nano scale. It can be 

seen that the critical buckling load and transverse deflection of sandwich beam by considering both 

nonlocal stress - strain parameters is higher than the nonlocal stress parameter. On the other hands, 

it is noted that by considering the nonlocal stress-strain parameters simultaneously becomes the 
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actual case. It can be shown that with an enhance in the power law index, the stiffness of micro 

sandwich beam decreases, then it leads to decrease the critical buckling load and increase the 

transverse deflection of sandwich beam. On the other hands, with increasing of power law index, 

the flexibility of sandwich structures increases. 
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