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Abstract.  Contaminant transport in groundwater induces major threat and harmful effect on the 
environment; hence, the fate of the contaminant migration in groundwater is seeking a lot of attention. In this 
paper a two dimensional numerical flow and transport model through saturated layered soil is developed. 
Groundwater flow and solute transport has been simulated numerically using proposed model. The model 
implements the finite volume time splitting method to discretize the main equations. The performance, 
accuracy and efficiency of the out coming numerical models have been successfully examined by two test 
cases. The verification test cases consist of two-dimensional, groundwater flow and solute transport. The 
final purpose of this paper is to discuss and compare the shape of contaminant plume in homogeneous and 
heterogeneous media with different soil properties and control of solute transport using a zone for 
minimizing the potential of groundwater contamination; furthermore, this model leads to select the effective 
and optimum remedial strategies for cleaning the contaminated aquifers. 
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1. Introduction 
 

Throughout 20th century, wide range of environmental problems caused by contaminants was 

frequently reported around the world. Groundwater polluted by hyper saline water in arid or semi-

arid area (Boufadel et al. 1999), contaminant leakage in landfills and waste disposal at urban areas, 

(El-Zein 2008, Zhang and Schwartz 1995), and seawater intrusion in coastal area (Zhang et al. 

2002), are important cases in point; thus, there is a growing concern over contaminant migration 

problems especially in subsurface systems. Contaminant transport by flowing water has broad 

impact in environmental protection and resource utilization. The leaching of salts and nutrients in 

soils also has considerable influence on agricultural production (Bear and Cheng 2010). The 

management of polluted subsurface systems for control of groundwater quality will be a vital 

requirement for sustainability. The effective management of contaminated aquifers and the 

selection of proper and effective remedial technologies depend on the accurate and precise 

simulation and prediction of flow and solute transport. In order to investigate contaminant 
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transport in groundwater systems, mathematical modeling should be developing. Nevertheless, 

some analytical solutions in last decade were introduced (Li and Cleall 2011, Abolbashari et al. 

2016), these solutions to such problems with complex geometry and complicated boundary 

conditions, are almost impossible to obtain; as a result, it brings about numerical modeling 

becomes the method of choice for analyzing contaminant transport through the subsurface media 

(McDonald and Harbaugh 1988). Solving transport equation requires the knowledge of velocity  

distribution throughout the solution domain; consequently, for meeting this requirement, 

mathematical models should be based on the governing flow equation. 

Flow simulation in porous media has been extensively studied in last decades for determining 

the groundwater properties. A proper description of contaminant transport plays a major role in 

many aqueous systems. For subsurface flows, description of the transport physics must often be 

augmented by chemical and/or biological considerations. This generally leads to advective-

diffusive-reactive transport equations. The solution of this equation is a long standing problem and 

many numerical methods have been introduced to model accurately the interaction between 

advective, diffusive and reactive processes. In recent field studies, there is an increasing interest in 

solving together flow and solute transport in underground water.  

The mathematical nature of the flow and transport equations has different and specific methods 

for their approximations in numerical simulation. In general, the numerical solution of flow and 

transport equations has been dominated by finite difference, finite element and finite volume. 

Finite difference method broadly is used for solving partial differential groundwater equation as 

one the oldest method (Igboekwe and Achi 2011). Hulagabali et al. (2014), Jobson and Harbaugh 

(1999) can be counted as a few samples among many other works in the advection-diffusion 

equations. In addition to this classical approach, there is finite element method, which has been 

widely used for solving flow equation in the last two decades (Satavalekar and Sawant 2014). In 

compare to finite difference method this method provides an appropriate geometric flexibility. 

Furthermore, this method is also another application to use an accurate approximation for ADR 

equation (Sudicky 1989). Sirvastava and Yeh (1992) presented a Galerkin finite element method 

for modelling water and transport of chemically reactive solute through porous media under 

variably saturated conditions. Other more recent techniques such as either mesh less numerical 

method based on smoothed particle hydrodynamics (SPH) (Herrera et al. 2009) and mesh free 

method (Khoshghalb and Khalili 2013) was introduced in the recent investigation. 

A limited amount of research is undertaking regard to the fate of the contaminant in layered soil 

and the effect of zone on the controlling of pollution migration. In the present investigation, an 

attempt has been made to provide a simple but sufficiently accurate numerical modeling of the two 

dimensional solute transport through the saturated layered soils using finite volume method in 

order to explore the shape of contaminant plume. 
 
 

2. Governing equation 
 

The groundwater flow is simulated by combination of Darcy’s law and mass conservation 

equation, yielding the Boussinesq’ equation and the solute transport is described by the advection-

dispersion-reactive equation. 

 

2.1 Equation for flow in saturated media 
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The following equation is taken as the equation governing three dimensional flow of 

groundwater in saturated porous media (Bear 1979) 
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Where K is the hydraulic conductivity; h is hydraulic head; Ss is specific storage and t is time.  

Eq. (1) can be written in two dimensional as 
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2.2 Equations for transport of contaminants 

 
The solute transport mathematical model is presented with the following equation (Bear 1979) 

CRCvCD
t

C
R dad 




).().(  (3) 

Eq. (3) can be written in two dimensional as 
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Where D is the hydrodynamic dispersion coefficient; v is the seepage velocity; C is the 

contaminant concentration; λ is the decay constant and Rd is the retardation factor (Bear 1979) 
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Where  ρb is the bulk density of contaminant and Kd is distribution coefficient. 

The first term on the right side of Eq. (4) represents the change in concentration due to 

hydrodynamic dispersion. The second term represents advective transport, and describes the 

movement of solutes at seepage velocity of the flowing groundwater. The third term lumps all of 

the chemical, geochemical, and biological reactions that cause transfer of mass between the liquid 

and solid phases or conversion of dissolved chemical species from one form to another. 

 

 

3. Transport contamination mechanism 
 

 The mechanism of the pollution migration in porous media generally has two major parts. One 

of them is, physical processes move mass from point to point and the second one is chemical and 

biological process redistributes mass. This mechanism is set out below. 

 

3.1 Advection 
 

The advection is the movement of dissolved solute with flowing groundwater at the seepage 

velocity in porous media. The advection is governed by the Darcy’s law as it is the transport of the 

solute. Darcy’s law states that the flow rate of water through soil from point 1 to point 2 is 

proportional to the head loss and inversely proportional to the length of flow path 
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Fig. 1 Schematic diagram distribution of velocities in a single capillary (a) and distribution of 

velocities in a more complex pore system (b) 

 

 

L
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Where Q is groundwater flow rate; A is cross section area of flow; h2-h1 is head loss; L is 

distance; K is hydraulic conductivity. The seepage velocity can be calculated as 
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Where n is porosity. 

 

3.2 Dispersion 
 

It is the result of two processes-molecular diffusion and mechanical mixing. The mechanical 

mixing is results from the uneven distribution of water flow velocities within and between 

different soil pores (Fig. 1). Dispersion can be derived from Newton’s law of viscosity which 

states that velocities within a single capillary tube follow a parabolic distribution, with the largest 

velocity in the middle of the pore and zero velocities at the walls (Fig. 1(a)). As soils consist of 

pores of many different radii, solute fluxes in pores of different radii will be significantly different, 

with some solutes again traveling faster than others (Fig. 1(b)). 

The molecular diffusion is a process as a result of the random motion of chemical molecules. 

This process causes solute to move from a location with a higher concentration to a location with a 

lower concentration. Molecular diffusion can be represented by Fick’s law as 

x

C
DF m




  (8) 

Where F is mass flux; Dm is diffusion coefficient in unobstructed water media and 
x

C



  is 

concentration gradient.  The Fick’s law was derived in unobstructed water solutions. When this 

law is applied to porous media, the diffusion coefficient should be smaller since the ions follow 

longer paths caused by the presence of solid particles and because of adsorption on solids. This 

application yields an apparent diffusion coefficient D
*
 represented by Charles et al. (1991) 

mDD *  (9) 
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Where τ is tortuosity coefficient calculated by empirical equation which is expressed by 

Millington and Quirk (1961) 

3/1n  (10) 

Since these two processes cannot be separated in groundwater flow, the coefficient of 

hydrodynamic dispersion is taken into account. 
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Where αL is longitudinal dispersivity and αTV is transversal dispersivity. Although conventional 

theory holds that αL is generally an intrinsic property of the aquifer, it is found in practice to be 

dependent on and proportional to the scale of the measurement. Most reported values of  αL fall in 

a range from 0.01 to 1.0 time the scale of the measurement, the value of αTV is typically 1/10 to 

1/100 of the longitudinal dispersivity. 
 

3.3 Sorption and degradation 
 
Sorption is the exchange of molecules and ions between the solid phase and liquid phase, 

including adsorption and desorption. Adsorption is the attachment of molecules and ions from the 

solute to the solid phase causing a decrease of concentration of the solute this is called Retardation.  

Desorption is the release of molecules and ions from the solid phase to the solute. The simplest 

form of the adsorption isotherm is the linear isotherm given by (Bear 1979) 

CKS d  (14) 

Where Kd is the distribution coefficient. 

The degradation term is a general term and covers both radioactive decay and biodegradation. 

The general principle of the radioactive decay and biodegradation as well as their incorporation 

into the solute transport differential equation is defined such as a first order Kinetic reaction; thus, 

the rate of decay reaction clarifies such as below (Bear 1979) 

CRr d  (15) 

It should be noted that in the present research the sorption and degradation terms is ignored. 

 

 

4. Numerical scheme 
 

4.1 Numerical technique for flow equation 
 

Two major grid generation approaches have been taken by the past investigators in the fields of 

finite-difference and finite-element methods. In the first approach, the solution domain is  
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Fig. 2 Space discretization of the modeling domain 

 

 

discretized using a fixed mesh (Desai and Li 1983). In this case, the solution domain should 

certainly involve the region where the seepage occurs therein. Since this approach performs many 

drawbacks, there have been many modifications to improve the accuracy of the approach. For 

example, Zhang et al. (2001) refine the distributed coarse grid suitably around the phreatic surface 

in order to improve the local accuracy of the solution. On the other hand, Holm and Langtangen 

(1999) take a similar strategy; however, they only focus on one node close to the phreatic surface 

to achieve the same accuracy benefiting from less computational trouble. The alternative approach 

is to choose moving grid (Chung and Kikuchi 1987), which has numerous superiorities comparing 

with the first approach. In this case, the solution domain is firstly guessed and a suitable mesh is 

filled in. The mesh size frequently changed during the solution procedure until determining the 

correct position of the phreatic surface. 

In the present work, a structured quadrilateral mesh has been deployed to discretize the 

problem domain (Fig. 2). Scalar variables such as piezometric head are computed at the nodes 

which are placed at the centers of the cells and vector variables such as velocity are calculated at 

the intersection of grid lines. 

The time splitting algorithm originally was proposed by Yanenko (1971) has been widely 

employed to solve numerically the governing partial differential equations. Employing this 

algorithm, the Boussinesq equation can be split into one double stage step as followings 
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In the stage one piezometric head at the previous time step n is used to diffuse in x direction to 

determine the new intermediate piezometric head h
*
.  In the second stage, using h

*
 to diffuse in z 

direction, the next step piezometric head, h
n+1

 is calculated. Implementation of finite volume on 

Eq. (17) makes 
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F demonstrates the flux which, into or out of the system calculated as follows 
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This step uses the second order explicit scheme. It uses a classical iterative algorithm to obtain 

the solution of the free surface problem. This scheme is a fixed point algorithm, in which the free 

surface position is updated on each iteration on the basis of the comparison the computed 

piezometric head value with its elevation head until convergence is achieved. The cell is dried 

provided that the piezometric head value is less than the elevation head, in case the piezometric 

head value is greater than the upper cell elevation head, then the upper cell will be wetted. The 

cells are gradually dry or wet until reaching the correct phreatic surface. The drying and wetting 

may simultaneously occur during the solution procedure. The numerical simulation is carried out 

until steady-state condition is detected. 

 

4.2 Numerical technique for transport equation 
 

The present model uses a finite volume time splitting method to solve the transport equation in 

two steps. The first step, which is a double stage one, solves the diffusion terms in x and z 

directions to find intermediate concentrations C
*
, C

**
. In this step using the previous time 

concentration and the second order explicit scheme to find intermediate concentration. 
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In the second step, which is double stage too, using C
**

 and C
***

.and the Fromm second order 

explicit scheme advection terms are calculated. The first stage is included solving advection in x 

direction using C
** 

to find the intermediate concentration C
***

 and the next stage is solving 

advection in z direction to find the next time concentration C
n+1
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Special techniques for solving advection-diffusion equations can be found in Namin (2003). 

 

4.3 Initial and boundary condition 
 

To obtain a unique solution of a partial differential equation, additional information about the 

physical state of the process is required. This information is supplied by initial and boundary 

conditions. For steady state problems, only boundary conditions are required, whereas for transient 

problems, boundary and initial conditions must be specified. 

 

4.3.1 Initial condition 
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Fig. 3 The current phreatic surface solution and comparing Borja and Kishnani (1991), Bardet and 

Tobita (2002) and Darbandi and Daghighi (2007) model results 

 

 

Since the flow model is obtained using an iterative algorithm, to start these iterations in the 

algorithm, an initial phreatic surface needs to be guessed. The solution of phreatic surface solves 

numerous unsteady situations, which is started with the initial condition and continue until 

adequately converges to steady state situation. Final solution won’t be changed, despite using 

different initial conditions. In the transport model is a transient problem; as a result, initial 

condition plays an important role. 

 

4.3.2 Boundary condition 
Specifying conditions on the boundaries of a problem is one of the key components of a 

numerical analysis. Due to the extreme importance of boundary conditions, it is essential to have a 

thorough understanding in order to obtain meaningful results. 

Boundary condition includes three types: 

1. Head boundary condition 

2. Specified boundary flow 

3. Seepage face boundary 

A constant-head boundary occurs where a part of the boundary surface of an aquifer system 

coincides with a surface of essentially constant head. In the type of specified-flux boundary, the 

flux across a given part of the boundary surface is considered uniform in space and can change 

with time. For seepage face boundary neither head nor flux is known. The pore pressure on a 

seepage face is zero. 

 

 

5. Validation 
 

Two test cases are now presented to verify the flow and transport solutions. The verification 

test cases consist of two-dimensional, groundwater flow and solute transport. 
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Table 1 Parameters of tests conditions 

Material Grain size (µm) Velocity (m/s×10
-5

)  Transverse dispersion coefficient (10
-9

m
2
/s)  

Quartz 60-100 0.571 0.39 

 

 
Fig. 4 Schematic of experiment setup 

 
 
5.1 Validation of flow model 

 
The developed flow formulation is validated against a test case. This case is an earthen dam 

with tail water investigated by Oden and Kikuchi (1980), Borja and Kishnani (1991), Lacy and 

Prevost (1987), Bardet and Tobita (2002), Darbandi and Daghighi (2007), As seen in Fig. 3, the 

width of the dam is 5 m and the reservoir elevation is 10 m. The Analytical solution which is used 

the Dupuit Forchhimer approximation won’t be able to predict accurately the phreatic surface. The 

fact that the actual water table lies above the analytical one can be explained by the fact that, the 

Dupuit flows are all assumed horizontal, whereas the actual velocity of the same magnitude have 

downward vertical component so that a greater saturated is required for same discharge. At the 

downstream boundary a discontinuity in flow forms because no consistent flow pattern can 

connect a water table directly to downstream free water surface. The water table actually 

approaches the boundary tangentially above the water body surface and forms a seepage face. 

 Oden and Kikuchi (1980) use finite-element method and solve the problem for a fixed grid in 

the domain. The two other references use finite-difference method and trace the free surface by 

following some arbitrary pressure value. As is seen in Fig. 3, Borja and Kishnani (1991) do not 

predict the seepage face at all; the current formulation shows that the water is really seeping 

through the right face and the flow lines exit at atmospheric pressure. Comparing the present result  

with other results indicates that the current result is in good agreement with those of Bardet and 

Tobita (2002) and Darbandi and Daghighi (2007). 

 

5.2 Validation of flow transport model 
 

The second test case aims at validating the solute transport model. Experimental results 

obtained by Huang et al. (2002) were considered to compare with the simulation transport model 

results. The experiment was conducted in dimensions 180×280×10 mm
3
, its setup is shown in Fig. 

4. This system can be evaluated as a 2D model, for its nominal thickness; therefore, the 2D  
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Fig. 5 Comparison of the experimental, numerical and analytical solution in section x=31 mm 

 

 
Fig. 6 Comparison of the experimental, numerical and analytical solution in section x=95 mm 

 

 
Fig. 7 Two dimensional domains of examples 

 

 

dimensional experimental test case was carried out, the parameter of which are summarized in 

Table 1. The experiment was done for 24 hours. In the experimental test case, the contaminant 

distribution at two different sections with its analytical solution is reported. These results are 

compared with the numerical model and the comparison shows good agreement. (See Figs. 5 and 

6). The maximum of relative error between experimental and numerical results equals 8.7% in the 

coordination of x=95, y=0 mm. 

 

 

6. Model implementation 
 

In order to study the effect and significance of soil parameters and stratification on the 

contamination migration some examples are considered. The example domain is a 2D vertical  
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(a) After 12 hours (b) After 24 hours 

  
(c) After 48 hours (d) After 72 hours 

Fig. 8 Shape of solute plume in gravelly soil 

 

 

having a length equal to 900 m in the x direction, a height of 250 m in the z direction with different 

configurations for the permeability and stratification (Fig. 7). The first formation properties are 

alike gravel. Its hydraulic conductivity, porosity and mean grain size respectively equal to 0.01 

m/s, 0.3 and 10 mm. The second formation which is alike sand has the following soil properties 

hydraulic conductivity, porosity and mean grain size respectively equal to 0.0001 m/s, 0.45 and 

1mm. The upstream and downstream heads equal to 250 and 150 m. Solute contamination is 

uniformly injected across in the coordination of x=150 m and z=110 m. The injection time is one 

day after that it will be stopped. Injection causes contaminant concentration to be 100 mg/l for 24 

hours at injection point. 
 

6.1 Example 1 
 

In the first example configuration, the domain is composed of a homogeneous soil. The first 

case soil is gravel and the second one is sand. The concentration plumes over the simulation period 

in saturated gravelly and sandy region are evaluated in Figs. 8 and 9. Fig. 8 indicates advection in 

the permeable media is faster and the dispersion is slower. It is shown in the permeable region 

advection is prominent to the diffusion since in this region the seepage velocity has great value so 

its effect is much more significant. Inspection of the shape of the solute plume in Fig. 9 reveals 

that in region with lower hydraulic conductivity, advection effect decreases due to reduction of 

seepage velocity, on the other hand diffusion coefficient grows; thus, diffusion impact adds to. 
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(a) After 10 days (b) After 50 days 

  
(c) After 100 days (d) After 150 days 

Fig. 9 Shape of solute plume in sandy soil 

 

 
Fig. 10 Comparison of solute transport in gravelly and sandy soil after 2 days (z=105 m) 

 

 

Comparison of contaminant migration in high and low permeable region can be seen in Fig. 10. 

The pollution in gravelly soil migrates quickly in regard to sandy soil and advection is dominating 

phenomena in the homogeneous gravelly media. 

 

6.2 Example 2 
 
Another simulation was carried out to investigate the effect of stratification and strata sequence 

in the porous media. The configuration of this example includes two strata with different 

permeability. The length of foremost strata is 300 m. The first case has two strata respectively 
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(a) After 10 days (b) After 60 days 

  
(c) After 120 days (d) After 180 days 

Fig. 11 Shape of solute plume in G-S media 

 

 

gravel and sand. Sequence of strata changes in second configuration case and starts with the sand. 

In Figs. 11 and 12 it can be seen that in the heterogeneous media Darcy velocity has relation to the 

height of seepage surface, this relation is interpreted by continuity equation. As the flow rate is 

constant, the region with less saturated area has the more Darcy velocity; however, it has the low 

hydraulic conductivity. Fig. 13 shows advection rate in the both strata is approximately constant. It 

is arise from the seepage velocity almost is equal in the both strata. Owing to continuity equation, 

Darcy velocity in the second stratum is greater and porosity of the second stratum is rather than the 

first. Consequently it leads to have the same seepage velocity in the both strata. On the other hand 

diffusion in the second strata boosts due to growth of diffusion coefficient. Fig. 14 indicates 

diffusion rate in the first strata is more in comparison to the second one; advection in the second 

stratum has much more importance than the first one, as a result further seepage velocity. The 

second stratum has the more Darcy velocity and the less porosity; thus, it makes the much more 

seepage velocity. It can be seen in Fig. 15 the advection and dispersion rate in the second case is 

more than the first; due to that the length of permeable formation is more. 

 

6.3 Example 3 
 

Another steady-state simulation was performed to investigate the effect of inclined lens on 

contaminant migration. The first configuration case is a sand lens, in gravel. The second one is 

gravel lens in sand. Fig. 16 indicates in a lower permeable lens reduces advection and increases 
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(a) After 10 days (b) After 20 days 

  
(c) After 30 days (d) After 40 days 

Fig. 12 Shape of solute plume in S-G media 

 

 
Fig. 13 Contaminant migration in G-S media (z=105 m) 

 

 
Fig. 14 Contaminant migration in S-G media (z=105 m) 

 

 
Fig. 15 Comparison of solute transport in G-S and S-G soil after 40 days 
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(a) After 5 days (b) After 10 days 

  
(c) After 15 days (d) After 20 days 

Fig. 16 Shape of solute plume in G-S-G media 

 

 

diffusion so; it can impede or reduce the progress of contaminant in migration and the lens works 

as a barrier. Results of solute transport in sandy soil with a gravelly lens are presented in Fig. 17. 

According to this figure, diffusion reduces through the permeable lens and the inclined transition 

zone conveys solute plume downward, so acts as a drain. This example also shows that the present 

numerical model can predict and evaluate influence of containment on pollution migration. 

 

 

7. Discussion 
 

7.1 Discussion on example results 
 

The results indicate that in homogeneous media, advection and diffusion respectively depend 

on seepage velocity and porosity. In permeable homogeneous media advection influence is more 

important than diffusion and by decreasing the hydraulic conductivity the significance of 

advection dwindle and diffusion emphasis expand. Compare to homogeneous media, advection 

depends on the height of seepage face and porosity, in heterogeneous media, in fact the less height 

of seepage surface represents the more Darcy velocity and the less porosity brings about the more 

seepage velocity. Diffusion in either homogenous or heterogeneous media just depends on 

porosity. The existence of different lens in homogeneous region plays a major role on solute 

transport. Low permeable lens reduces advection rate and diffuses contaminant through it.  
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(a) After 20 days (b) After 50 days 

  
(c) After 80 days (d) After 110 days 

Fig. 17 Shape of solute plume in S-G-S media 

 
 
Consequently, it can stop or decline the contaminant migration. The lens with higher conductivity 

permeability increases the advection and decreases diffusion through it. Permeable lens direct 

contaminant downward and the contaminant plume get away from the groundwater table. In 

particular, the selection of the width of the lens and its soil properties such as its hydraulic 

conductivity and porosity plays a major role in controlling the solute transport in porous media. 

 

7.2 The relative importance of the advection and diffusion in solute transport 
 

As the governing Eq. (3) describe, the mass of solute transport through porous media is 

achieved by three different physical phenomena, namely advection, dispersion and diffusion. The 

share of which in the total flux has been taken here as a criterion to evaluate the importance of 

each phenomenon in the total transport. 

Peclet number is a dimensionless parameter that indicates the relative importance of advection 

and diffusion to the transport scalars in a given system. This parameter is defined as below and it 

was investigated in examples as a criterion to evaluate the share of each phenomenon in 

contaminant transport equation.  

mD

Ud
Pe   

(26) 

Where U is seepage velocity; Dm is diffusion coefficient in unobstructed water media and d is  

278



 

 

 

 

 

 

Development a numerical model of flow and contaminant transport in layered soils 

 
Fig. 18 Peclet number in gravelly soil (z=105 m) 

 

 
Fig. 19 Peclet number in sandy soil (z=105 m) 

 

 
Fig. 20 Peclet number in G-S media (z=105 m) 

 

 
Fig. 21 Peclet number in S-G media (z=105 m) 

 

 
Fig. 22 Peclet number in G-S-G media (z=105 m) 

 

 

grain size. Chunmiao and Gordon (1995) are show in the transport in porous media problem the 

value of Peclet number in the order of magnitude 6 and greater than that represent the relative 

dominance of  advection and dispersion over diffusion.  

Figs. 18 and 19 represent the Peclet number in the first example. There has been a gradual rise 

in the Peclet number due to the steady increment of the velocity in homogenous porous media. The 

Peclet number in homogeneous media with high permeability greater than the low one, which  
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Fig. 23 Peclet number in S-G-S media (z=105 m) 

 

 

means the ration of advection rate, is more. 

The second example indicates the Peclet number of strata formation changes dramatically, so 

the relative importance of advection, dispersion and diffusion change too. Figs. 20 and 21 show 

the Peclet number drops quickly or climbs sharply on the strata formation. At the point of entering 

to lower permeable strata, it sharply declines and then levels off that are advection rate is reduced. 

At the point of entering to permeable strata, there is a sudden growth and then it remains constant. 

Figs. 22 and 23 indicate a wildly fluctuating of Peclet number in the third example. The case 

which has lower permeable lens has a sharp drop at the point of entering to the lens and through 

that it is stable, after exiting, grows wildly and then levelled off. The case with the higher 

permeable lens has a sudden rise at the point of entering to the lens and through the lens, it is 

approximately constant, then after exiting, it has wildly reduction and then the recession has bottomed 

out. 

 

 

8. Conclusions 
 

To simulate solute transport in subsurface systems, groundwater flow and contaminant 

transport equations has been solved numerically by finite volume time splitting method in this 

research. The models can simulate the solute plume in layered soils with acceptable accuracy. 

Groundwater flow model extracted the phreatic line by iteration and the seepage velocities in the 

computational domain are derived from this model then, it is transferred to the transport model; 

thus, the saturated surface is selected for implementation of transport model. The transport model 

uses second order of accuracy to predict the fate of contaminant in layered soils. The accuracy of 

the flow and transport was demonstrated by favorable comparisons with experimental and 

analytical measurements. It also has been shown the influence of homogenous and heterogeneous 

regions on contaminant migration. Results show solute transport in homogeneous media depends 

on hydraulic conductivity and porosity, however; in heterogeneous media it depends on the height 

of seepage surface and porosity. Moreover; in low permeable region dispersion dominate still in 

high permeable media advection has the more importance in solute transport. Owing to the having 

negligibility of diffusion rate in the high permeable homogeneous media restoration will be more 

convenient in coarse graded soil regard to fine. It is notable that, the proposed model can develop 

better pre-emptive or remedial strategies and assess of aquifer clean up procedure among various 

methods such as pump and treat, in- situ treatment and containment. 
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