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Abstract.  High amounts of air pollution in crowded urban areas are always considered as one of the major 

environmental challenges especially in developing countries. Despite the errors in air pollution prediction, 

the forecasting of future data helps air quality management make decisions promptly and properly. We 

studied the air quality of the Aqdasiyeh location in Tehran using factor analysis and the Box-Jenkins time 

series methods. The Air Quality Control Company (AQCC) of the Municipality of Tehran monitors seven 

daily air quality parameters, including carbon monoxide (CO), Nitrogen Monoxide (NO), Nitrogen dioxide 

(NO2), NOX, ozone (O3), particulate matter (PM10) and sulfur dioxide (SO2). We applied the AQCC data for 

our study. According to the results of the factor analysis, the air quality parameters were divided into two 

factors. The first factor included CO, NO2, NO, NOx, and O3, and the second was SO2 and PM10. 

Subsequently, the Box- Jenkins time series was applied to the two mentioned factors. The results of the 

statistical testing and comparison of the factor data with the predicted data indicated Auto Regressive 

Integrated Moving Average (0, 0, 1) was appropriate for the first factor, and ARIMA (1, 0, 1) was proper for 

the second one. The coefficient of determination between the factor data and the predicted data for both 

models were 0.98 and 0.983 which may indicate the accuracy of the models. The application of these 

methods could be beneficial for the reduction of developing numbers of mathematical modeling. 
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1. Introduction 

 

The rapid growth of urbanization and uncontrolled urban development has created 

environmental problems for urban dwellers. One of the major difficulties of living in big cities 

now, especially in developing countries, and in small towns in the near future is air pollution. Air 

pollution is a permanent threat to densely populated cities and leads to deleterious effects on 

public health and will result in great economic losses. Urbanization and urban development 

together with a sharp increase in population growth, industrial development and indiscriminate use 

of fossil fuels, have drastically increased air pollution. A large amount of contaminants 

incompatible with the normal mechanisms will be released into the air. Air pollution means the 
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presence of one, several, or a mixture of different pollutants in ambient air to the extent that would 

be harmful to humans or cause harmful effects to animals, plants and properties; or which may 

induce immeasurable effects on humans, animals, crops and synthetic materials (Erfanmanesh and 

Afuni 2006). Therefore, air pollution control is very vital. In this regard, availability of accurate 

and plentiful data and interpretation are an imperative tool which can help the air quality 

management to decide properly. Several methods are available to analyze air quality data such as 

statistical and deterministic methods. We applied factor analysis and the Box-Jenkins time series 

to air quality data. The first reason for using both methods is when we apply the invert 

Box-Jenkins time series, developing a model for each air quality parameter is necessary. It 

consumes a lot of times for experts to develop several models. Secondly, several air quality 

parameters depend on each other. We grouped the air quality parameters to a few factors using 

factor analysis and then applied the Box-Jenkins time series of a few factors instead of a lot of air 

quality parameters. These types of air quality interpretations are rare; however, several studies 

have used the two methods separately. 

Nowadays, Factor analysis is a statistical analysis technique that is used in various disciplines 

such as psychology, sociology, management, geography, and urban planning (Harvey and Todd 

1983). The analysis of time series rapidly developed in a practical and theoretical way after the 

original work of Box and Jenkins (Box and Jenkins 1970). Polydoras et al. (1998) compared the 

Weather forecasts for the amount of CO and SO2 in three different locations in the City of Athens 

using both distribute and Box nonlinear statistic models and predicted the maximum and the 

critical amount of pollutants. Sharma and Khare (2000) evaluated the Box-Jenkins time series 

based on the multivariate statistic models in predicting the CO concentration at a large crossroads 

in Delhi. Rodriguez-Rajo et al. (2005) developed pollen concentrations predictive models based on 

the ARIMA model in the North West of Spain. They found that the method of time series is an 

appropriate method for estimating the short-term effects of tree pollen in the atmosphere. 

Abbaspour and Rahmani (2005) and Sader Mousavi and Rahimi (2008) conducted some research 

about predicting carbon monoxide concentrations in the air of Tehran and Tabriz, respectively. 

Sharma et al. (2009) analyzed the air pollution parameters including SO2, NO2 and suspended 

particles using the Box-Jenkins method in Delhi India for a maximum of 24 hours per month. 

Vaseghi and Zibaie (2008) conducted air pollution predictions in Shiraz. Different methods of 

regression and non-regression were evaluated and the ARMA model was selected to predict the air 

pollution index based on the measured error rates. Kumar and Jain (2010) used ARIMA to predict 

CO, NO, NO2 and O3 in an urban traffic site in Delhi, India. They reported the suitability 

performance of ARIMA in short term air quality predictions. 

Nakhaei et al. (2011) developed two ARIMA models with different coefficients for CO in the 

Towhid Eastern and Western tunnels, using Box-Jenkins time series model for the prediction of 

carbon monoxide. Sami et al. (2012) used seasonal ARIMA (SARIMA) to anticipate the rate of 

dust fall in Quetta, Pakistan. They reported the appropriate performance of SARIMA. Gocheva- 

Ilieva et al. (2014) applied time series analysis, including BOX-Jenkins approach and factor 

analysis to forecast air pollution in Blagoevgrad, Bulgaria. They considered NO, NO2, NOx, PM10, 

SO2 and ground level O3, which were monitored for one year. They classified the pollutants in 

three factors and determined the factor to overall pollution. The results had a good agreement with 

the field monitoring. Kumar (2015) combined a signal extraction method SSA (Singular Spectrum 

Analysis) with ARIMA to predict the daily maximum ambient O3 concentrations. They indicated 

the aptness of the SSA-ARIMA in predicting short term air quality. 

The study area is located in northeast Tehran and the geographic coordinates of the city are 
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51°,2′ and 51°,36′ East longitude and 35°,34′ and 35°,50′ North latitude (Fig. 1). The elevations of 

Tehran are 2000, 1200 and 1050 meters in the north, in the center and in the south, respectively. 

The north and east of the city is surrounded by the Alborz Mountains. The main sources of 

precipitation are the Mediterranean and Atlantic winds that blow from the West, and the Alborz 

mountains act as a barrier to prevent the penetration of air masses. Tehran is also located in arid 

and semi-arid regions. The temperature variations are between 40 Celsius in summer and -5 

Celsius in winter. The annual rainfall is about 250 millimeters. 

To study air pollution emissions using deterministic modelling, the number and kinds of 

emission sources and environmental features such as wind direction and speed, temperature, 

stability of the atmosphere, topography of the region, solar elevation angle and surface heat flux 

need to be available. However, when few numbers of parameters such as air quality data with time 

are available using stochastic or probability modelling are applicable. In our study, the 

concentration of the pollutants was collected randomly. In the other words, three grab samples for 

each pollutant was collected. We referenced the mean value of the three samples in our study. For 

each air quality parameter a minimum 60, hourly or daily data are necessary and data should be 

measured in virtually equal time period. Because of lack of data for different mentioned 

parameters in our study area and air quality data was available which effect on air quality, we 

applied Box-Jenking time series models, which are a stochastic approach, to study air pollution of 

the north west of Tehran to predict air quality situation. Since, many numbers of air quality 

parameters have existed, we used factor analysis to reduce air quality parameters to a number of 

factors. Each factor includes number of air quality parameters with having similar characteristic. 

Instead of developing several numbers of univariate Box-Jenkin time series model for air quality 

parameters, we developed a model for each factor. 

The first objective of the study was to apply the factor analysis technique to air quality 

parameters including carbon CO, NO2, NO, NOX, O3, PM10 and SO2 data. The second aim was to 

develop the Box-Jenkins time series model using the factors data which were the results of the first 

objective. 

 

 

Fig. 1 The location of the study area 
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2. Materials and methods 
 

Forecasting is a key element in management decisions, because every decision has its own 

consequences. Time series refers to the set of observations which are arranged according to time 

and at even intervals. Although the data may be sorted according to some other factors such as 

distance. The order of observations is an important factor in using a time series method, because 

the inherent nature of a time series is highly correlated with the dependence or interdependence of 

the observations (Tobias et al. 2004). 

Factor analysis includes analysis of several variables simultaneously. Air quality parameters, 

which contain a high correlation coefficient between them, are placed into one single group. Factor 

analysis is applied to recognize the correct structure of collecting data and to identify the most 

significant factors contributing to the data structure (Buckley and Winter 1992, Padro et al. 1993). 

The Factor is a new independent variable, which cannot be directly measured and is in fact, 

immeasurable. Factor analysis is also used in establishing associations between parameters so that 

the number of parameters measured can be lessened. Eq. (1) describes the factor (Johnson and 

Wichem 2007). 

𝐹𝑗 =  𝑊𝑗𝑖 𝑋𝑖 = 𝑊𝑗1𝑋1 + 𝑊𝑗2𝑋2 + ⋯ + 𝑊𝑗𝑃𝑋𝑃

𝑃

𝑖=1

 (1) 

 

Where Fj is factor; Wji is factor number, and p is the number of variables. xi is observed 

variables. 

By using factor analysis, we manage air pollution parameters in a few groups which in the 

group (Factor) all parameters depend highly on each other. After that, instead of developing a 

model for each parameter separately, we developed a box Jenkins model for each group (Factor). 

Factor data are a combination of observed data according to Eq. (1). 

Procedure of Factor Analysis: Implementation Performance of factor analysis involves the 

following steps (Asadollahfardi et al. 2012): 
 

● Collecting all of the data and computing of a correlation coefficient matrix between all of 

the air quality parameters. 

● Determining the factor loading according to correlation coefficients. 

● Rotating the factors for simplicity and understandability of factor analysis. 
 

For further information, refer to Mulaik (2009) and Brown (2014). 

Box-Jenkins Methodology for Time Series Modeling: Decomposition of time series data into 

its components, while being instructive and revealing, is a difficult job. Moreover, it causes greater 

errors by accumulation of component errors (Asadollahfardi 2002). To avoid these problems, Box 

and Jenkins (1976) developed a new methodology, which in essence, performs the same job. We 

applied some transformations to remove simple and seasonal differences, trends, seasonal and 

cyclical components presented in the data. Then, a family of models is entertained for the 

transformed data, which is expected to be as simple as possible. The following section briefly 

explains the non-stationary Box-Jenkins method. 

Classification of Time Series Models: The behaviors of the sample autocorrelation function 

(SACF) and the sample partial autocorrelation function (SPACF) are important in tentative 

identification of stationary time series models. For the values of a stationary time series Zb, Zb+1,..., 

Zn which may be the original time series values or the transformed time series values, SACF is 
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defined as follows (Eq. (2)). The sample autocorrelation at lag k denoted by rk is 
 

𝑟𝑘 =
  𝑧𝑡 − 𝑧  𝑧𝑡+𝑘 − 𝑧 𝑛−𝑘

𝑡=𝑏

  𝑧𝑡 − 𝑧 2𝑛
𝑡=𝑏

 (2) 

where 

𝑧 =
 𝑧𝑡

𝑛
𝑡=𝑏

(𝑛 − 𝑏 + 1)
 (3) 

 

Considering rk is a function of lag k, for k = 1, 2,..., K is called the sample autocorrelation 

function (SACF). This quantity measures the linear relationship between a time series observation, 

separated by a lag of k time units. The rk is a coefficient of correlation and it is always between -1 

and +1. The standard error of rk is defined by (Eq. (4)) 
 

𝑠𝑟𝑘
=  

1 + 2  𝑟𝑗
2𝑘−1

𝑗=1

𝑛 − 𝑏 + 1
 

0.5

,     𝑘 = 1,2, … (4) 

 

The 𝑡𝑟𝑘
 statistic is then computed as (Eq. (5)) 

 

𝑡𝑟𝑘
=

𝑟𝑘
𝑠𝑟𝑘

 (5) 

 

Which is used to test the significance of rk, for k = 1, 2, ... 

Plotting rk against k provides the SACF. The behavior of this function is a key tool for 

identification of the stationary of a time series and its order. To employ the Box-Jenkins approach, 

one must examine and try to classify the behavior of the SACF. 

The sample partial autocorrelation function (SPACF) is another important tool for identifying 

time series models. The sample partial autocorrelation at lag k is defined by (Eq. (6)) 
 

𝑟𝑘𝑘 =  

𝑟1 , 𝑘 = 1

 𝑟𝑘 −  𝑟𝑘−1,𝑗 × 𝑟𝑘−𝑗
𝑘−𝑖
𝑗=1  

 1 −  𝑟𝑘−1,𝑗 × 𝑟𝑘−𝑗
𝑘−𝑖
𝑗=1  

, 𝑘 = 2,3, …
  (6) 

 

Where, 𝑟𝑘𝑗 = 𝑟𝑘−1,𝑗 − 𝑟𝑘𝑘 𝑟𝑘−1𝑟𝑘−𝑗 , 𝑗 = 1,2, … , 𝑘 − 1 

The standard error of rkk is defined as (Eq. (7)) 
 

𝑠𝑟𝑘
=  

1

𝑛 − 𝑏 + 1
 

0.5

 (7) 

 

The following equation indicates the student’s tkk-statistic 
 

𝑡𝑟𝑘𝑘
=

𝑟𝑘𝑘
𝑠𝑟𝑘𝑘

 (8) 

 

The precise interpretation of the SPACF at lag k is rather complicated. However, this quantity 

can intuitively be thought of as the sample autocorrelation of time series observations, separated 

by a lag of k time units, with the effects of the intervening observations eliminated. 
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For a time series consisting of Zb, Zb+1, ..., Zn, where Zt is the original or transformed value of a 

time series, an autoregressive model of order p, AR(p), is defined as 
 

𝑍𝑡 = 𝜙1𝑍𝑡−1 + 𝜙2𝑍𝑡−2 + ⋯ + 𝜙𝑟𝑍𝑡−𝑝 + 𝑎𝑡  (9) 
 

Where 1, ..., r are fixed coefficients and at, t = 1, 2, ...., n are independent random variables 

with zero mean and constant variance .2
a  They are usually assumed as normally distributed. 

Using the backward shift operator B, Eq. (9) can be written as 
 

𝜙𝑝(𝐵)𝑍𝑡 = 𝑎𝑡  (10) 
 

Where p (B) =1 – 1B – ... – pBp; And BZt = Zt-1,..., BpZt = Zt-p. 

A moving average model of order q, MA(q), is represented as 
 

𝑍𝑡 = 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞  (11) 
 

Or employing the backward shift operator B 
 

𝑍𝑡 = 𝜃𝑞(𝐵)𝑎𝑡  (12) 

where 

𝜃𝑞 𝐵 = 1 − 𝜃1𝐵 − ⋯− 𝜃𝑞𝐵𝑞  (13) 
 

The general non-seasonal autoregressive moving average model of order (p, q) is 
 

𝑍𝑡 = 𝛿 + 𝜙1𝑍𝑡−1 + ⋯ + 𝜙𝑝𝑍𝑡−𝑝 + 𝑎𝑡 − 𝜃1𝑎𝑡−1 − ⋯− 𝜃𝑞𝑎𝑡−𝑞  (14) 
 

This model utilizes a constant term . It has an autoregressive part which expresses the current 

value Zt as a function of past values Zt-1, Zt-2, ..., Zt-p with unknown coefficients (parameters) 1, ..., 

p. In addition, The model has a moving average part which is represented by at, at-1, ..., at-q with 

unknown fixed parameters 1, ..., q. The variable Zt is also considered as a function of a random 

variable, as, at-1, ...., at-q. 

In Eq. (14), the constant term  can be shown as equal to p(B), where  is the mean of the 

stationary time series Zt. In concise notation, Eq. (14) is presented as 
 

𝜙𝑝 𝐵 𝑧𝑡 = 𝛿 + 𝜃𝑞(𝐵)𝑎𝑡  (15) 
 

The statistical tests are available, which can be used to decide whether to include  in the 

model.If the stationary time series Zb, Zb+1, ...., Zn is in the original series, then assuming  is equal 

to zero, this implies that these original time series values are fluctuating around a zero mean, 

whereas 𝜇 ≠ 0 implies that these original values are fluctuating around a non-zero mean. In such 

a case one can use (𝑍𝑡 − 𝑍 ) in place of Zt. Then  can be removed from the model. If the stationary 

time series Zb, Zb+1, ..., Zn are different from those of the original time series values, where  is not 

assumed to be zero, it can be assumed that a deterministic trend exists in those original values. 

Here the deterministic trend refers to a tendency of the original values to move persistently upward 

(if   0) or downward (if   0). If a time series does not exhibit a deterministic trend, then any 

trend (or failure of the series to fluctuate around a central value) is stochastic. The stochastic trend 

is more realistic in practical situations since it does not dictate a certain path to be taken by the 

future values (Asadollahfardi 2014). 
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The general seasonal autoregressive integrated moving average model of order (P, Q, D, d, p, q) 

is 

∅𝑃 𝐵 ∅𝑃 𝐵
𝐿 𝛻𝐿 

𝐷𝛻𝑑𝑦𝑡
∗ = 𝛿 + 𝜃𝑞 𝐵 𝜃𝑞 𝐵

𝐿 𝛼𝑡  (16) 

where 

∅𝑃 𝐵 =  1 − 𝑄1𝐵 − 𝑄2𝐵
2 − ⋯− 𝑄𝑃𝐵

𝑃  (17) 
 

∅𝑃 𝐵
𝐿 = (1 − ∅1,𝐿𝐵

𝐿 − ∅2,𝐿𝐵
2𝐿 − ⋯− ∅𝑃,𝐿𝐵

𝑃𝐿  (18) 
 

𝜃𝑞 𝐵 = (1 − 𝜃1𝐵 − 𝜃2𝐵
2 − ⋯− 𝜃𝑞𝐵

𝑞  (19) 
 

𝜃𝑄 𝐵𝐿 =  1 − 𝜃1,𝐿𝐵
𝐿 − ⋯− 𝜃𝑄,𝐿𝐵

𝑄𝐿  (20) 
 

Where ∅𝑃 𝐵 , ∅𝑃 𝐵
𝐿 , 𝜃𝑞 𝐵   and 𝜃𝑄 𝐵𝐿  are non-seasonal autoregressive operator of order 

p, seasonal autoregressive operator order P, non-seasonal moving average operator q and seasonal 

moving average operator order Q, respectively. The δ is a constant of the model which µ is the real 

meaning of stationary time series. The δ can be calculated by the Eq. (21) 
 

𝛿 = 𝜇∅𝑃 𝐵 ∅𝑃 𝐵
𝐿  (21) 

 

B is the backward shift operator 𝐵𝑘𝑦𝑡 = 𝑦𝑡−𝑘 ; ∇𝑑
 is equals to the backward difference 

operator, and ∅∅1 , ∅2 , … , ∅𝑃 , ∅1,𝐿 , ∅2,𝐿 , … , ∅𝑃,𝐿 , 𝜃1 , 𝜃2 , … , 𝜃𝑞 , 𝜃1,𝐿 , 𝜃2,𝐿 , … , 𝜃𝑄,𝐿  are autoregressive 

and moving average orders which are unknown .We need to estimate using the sample data; 𝛼𝑡 is a 

random variable with mean zero and constant variance. The at is Independent and represent 

random error or random shocks. 

The Box-Jenkins consists of four basic steps, in which Table 1 indicates the steps. For more 

details on the Box-Jenkins model structure and forecasting, refer to Box and Jenkins (1976) and 

Box et al. (2008). 

Stages of Box-Jenkins modeling (Asadollahfardi et al. 2012) 
 

1. Check the data for normality: 

a. No transformation. 

b. Square root transformation. 

c. Logarithmic transformation. 

d. Power transformation 

2. Identification: 

a. Plot of the transformed series. 

b. Autocorrelation function (ACF). 

c. Partial autocorrelation function (PACF) 

3. Estimation 

a. Maximum likelihood estimate (MLE) for the model Parameters (Ansley algorithm). 

4. Diagnostic checks 

a. Over fitting 

b. Examination of the residuals (modified Portmanteau test) 

5. Model structure, selection criteria 

a. The Akaike Information Criterion (AIC) criteria 

b. PP criteria 

c. Bayesian criterion (BIC) criteria 
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To analyze, both factor analysis and Box-Jenkins time series, the SPSS software was applied. 

The Air Quality Control Company (AQCC) of Tehran Municipality monitors daily air quality data, 

including carbon monoxide (CO), Nitrogen Monoxide (NO), Nitrogen dioxide (NO2), NOX, ozone 

(O3), particulate matter (PM10) and sulfur dioxide (SO2). The data used in our study were collected 

by the AQCC in Aghdaseyeh location in Tehran between late March 2012 and in late January 

2013. 

 

 

3. Results and discussion 
 

Table 1 indicates the statistical summary of applied data in this study. These mentioned 

parameters in Table 1 were available for the study area. Data for THC and non-methane 

hydrocarbon compound (NMHC) and CH4 was not available. 

Table 2 indicates the correlation coefficient matrix for the observed air quality parameter data 

at the monitoring stations. Some of the parameters are positively correlated to each other, such as 

the correlation coefficient between NOX and CO, r = 0.814, NOX and NO, r = 0.993, PM10 and 

SO2, r = 0.646, NOX and SO2, r = 0.377, NO and SO2, r = 0.352, SO2 and CO, r = 0.346, SO2 and 

NO2, r = 0.356 and SO2 and NO, r = 0.352. Some other air quality parameters are negatively 

correlated. Tabachnick and Fidell (1996) stated that if all of the correlation between parameters are 

less than 0.3 the factor analysis is not useable. We attempted to find out the dependent  

 

 
Table 1 The statistical summary of air quality data in Aghdaseyeh located in Tehran 

Air quality parameters CO mg/l NO2 mg/l NO mg/l NOX mg/l O3 mg/l PM10 mg/l SO2 mg/l 

Number 282 280 280 280 265 232 282 

Mean 3.07 30.7 74.79 105.9 12.26 79.144 42.67 

Standard error 0.07 0.45 3.47 3.66 0.50 3.3578 1.25 

Mode 2.93 30.0 61.13 93.1 12.0 71.330 40.0 

Standard deviation 1.17 7.54 58.06 61.2 8.23 51.145 21.1 

Variance 1.39 56.9 3371.5 3752.8 67.8 2615.8 442.9 

Range 8.20 40.2 244.3 278.3 68.5 385.68 163.3 

Minimum 0.06 13.3 4.7 24.8 1.54 11.03 7.6 

Maximum 8.26 53.6 249 303.1 70.04 396.71 170.9 

 

 

Table 2 Correlation coefficient matrix between the air quality parameters 

Parameters CO NO2 NO NOX O3 PM10 SO2 

CO 1.000 0.370 0.810 0.814 -0.282 0.254 0.346 

NO2 0.370 1.000 0.368 0.472 -0.071 0.229 0.356 

NO 0.810 0.368 1.000 0.993 -0.203 0.259 0.352 

NOX 0.814 0.472 0.993 1.000 -0.201 0.274 0.377 

O3 -0.282 -0.071 -0.203 -0.201 1.000 -0.053 -0.078 

PM10 0.254 0.229 0.259 0.274 -0.053 1.000 0.646 

SO2 0.346 0.356 0.352 0.377 -0.078 0.646 1.000 
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parameters. Afterwards, the dependent parameters combined into a few groups. Then we applied 

the Box-Jenkins time series model to a few groups (factors) instead of all parameters. Other 

parameters have a much smaller correlation coefficient, which means that we must disregard them 

and suggests that they may affect the air quality independent from each other. As presented in 

Table 2, many of the correlation coefficients are above 0.3 which means the factor analysis is 

necessary. However, the correlation coefficient of O3 is a minus value. Because ozone, as a 

secondary pollution concentration, is emanated from the others, and its value is evidently inversely 

proportional to their concentrations. Cryer (1986) also expressed that for confirmation of using 

factor analysis, the values of the KMO and the Bartlett’s Test should be about 0.6 and less than 

0.05, respectively. The value of the Kaiser-Meyer-Olkin (KMO) for the existing data was equal to 

0.549 and the result of Bartlett’s Test was significant (a = 0.05 > p-value = 0. 0). 

One of the methods to figure out the number of factors is the estimation of eigenvalue and 

factor loadings for the correlation matrix, and each eigenvalue corresponded to an eigenvector that 

identifies the group of air quality parameters that are most highly correlated among them. The first 

eignfactor accounted for greatest variation among the observed air quality parameters, while each 

following eigenfactor was orthogonal to all former factors, and provided incrementally smaller 

contributions to the overall descriptive ability of the model. The eigenvalue of the correlation 

matrix of this study is described in Table 3. Since, a lower eigenvalue may contribute only 

modestly to the descriptive ability of the air quality data, only the first few factors were selected. 

Methods are present to figure out the number of factors that need to be considered and the number 

of those that can be safely neglected (Browne 1968, Linn 1968, Tucker et al. 1969, Hakstian et al. 

1982). The method of Kaiser Criterion, which retains just those factors with eigenvalue larger than 

one, is the most widely used technique (Kaiser 1960). As indicated in Table 3 the first two factors, 

which have an eigenvalue bigger than one were selected because the first two factors contain 68.1% 

of air quality variables. The obtained R squares are valid for the two factors, which account for 68% 

of total variation of the data. According to Table 3, although the third eigenvalue was close to one, 

we selected the first two factors. Because the eigenvalue was drawn descending and sudden 

changes occurred in two points related to the other points. This indicates confirmation of two 

factors (Tabachnick and Fidell 1996). The disadvantage of the Kaiser’s (1960) is often leads to 

over factoring and sometimes under factoring. However, a number of our variable was 7 and two 

factor could be used. 

Factor loading reflects the correlation between the air quality parameters and the extracted 

factors. Factor loadings for the two retained eigenvalues are indicated in Table 4. Factor loading is 

described with rotation using the Quartimax method. The main function of the factor rotation 

 

 
Table 3 Individual and cumulative eigenvalue of the air quality observations 

Factors Eigenvalue Variance% Cumulative variance% 

1 3.478 49.68 49.6 

2 1.294 18.49 68.1 

3 0.929 13.27 81.4 

4 0.724 10.33 91.7 

5 0.338 4.82 96.6 

6 0.236 3.37 100.0 

7 1.497E-06 2.139E-05 100.0 
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application is to facilitate interpretation by providing a simple factor structure. The factors were 

rotated in order that the observed axis were aligned with a dominant set of air quality parameters 

which assisted in understanding the relation of factors to the observed water quality parameter 

(Zeng and Rasmusson 2005). In this work the Quartimax rotation was used, another rotation such 

as biquartimax, equamax and varimax were also developed (Johnson and Wichern 2007, Kaiser 

1960). Table 4 indicates the factors before and after rotation. In the factor loading after rotation the 

first factor has higher air quality parameters as compared to the second factor, with both being 

positive. The largest positive value 0.944 belongs to NO2. The first factor included CO (0.89), NO2 

(0.453), NO (0.936), NOX (0.944) and O3 (-0.407), and the second factor included PM10 (0.877) 

and SO2 (0.861). 

Fig. 2 illustrates the time series for the first factor after normalization using logarithmic 

transformation. 

In this stage, we had two time series, including the first and second factors. The results of 

normality of the first factor series are presented in Table 5. As described in the table, the first 

factor time series data was not normal since the significance level was less than 0.05 and a very 

strong presumption against a neutral hypothesis existed. The observed result would be highly 

unlikely under the null hypothesis. First, the series was transformed to normal series using 

logarithmic transformations. Normality was carried out for both factors time series data. Next and 

then stationary by the factor time series was performed. 

 

 
Table 4 Factors loading for the air quality observations 

Air quality parameters 
Factor loading before rotation Factor loading after rotation 

1 2 1 2 

CO 0.859  0.936  

NO2 0.583  0.944  

NO 0.904  0.453 0.390 

NOX 0.929  0.890  

O3  
0.314  0.861 

PM10 0.506 0.724  -0.407 

SO2 0.615 0.649  0.861 

 

 

  

(a) (b) 

Fig. 2 (a) The time series for the first factor after normalization using a logarithmic transformation; 

(b) the time series for the second factor after normalization using logarithmic transformation 
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Table 5 The results of the normality of the first factor time series data 

The first 

factor 

Kolmogorov-Smirnov Test Shapiro-Wilk test 

Statistical 

test 

Degree of 

freedom 

Significant 

level 

Statistical 

test 

Degree of 

freedom 

Significant 

level 

0.121 364 0.000 0.953 364 0.000 

 

 

Table 6 The results of the statistical testing for the normality of the second factor data 

The first 

factor 

Kolmogorov-Smirnov Test Shapiro-Wilk test 

Statistical 

test 

Degree of 

freedom 

Significant 

level 

Statistical 

test 

Degree of 

freedom 

Significant 

level 

0.159 364 0.000 0.785 364 0.000 

 

 

  

(a) (b) 
 

 

 

 

(c) (d) 

Fig. 3 (a) the ACF of the transformed first factor time series data; (b) the PACF of the transformed 

first factor time series data; (c) the ACF of the transformed second factor time series; (d) the 

PACF of the transformed second factor time series data 

 

 

Table 6 illustrates the results of both Kolmogorov-Smirnov and Shapiro-Wilk tests were less 

0.05%, which describes that the data of the second factor was not normal. For the transformation 

of the second factor time series data the results of normality of the second factor series. 
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As indicated in Tabtle 6, the results of normality, logarithmic transformation was applied. Fig. 

3 presents ACF and the PACF for the first and second factor time series. From the ACF and PACF 

we estimated the orders of the model. The first suggested model for the first factor time series 

model was ARIMA (0,0,2). 

The parameter’s value of Moving Average order one (MA (1)) model and its p-value were 0. 

277 and 0.358, respectively. Therefore, no presumption against the neutral hypothesis are available. 

The MA (2) parameter value was 0.292. The constant value of the model and p-value were 

–0.0007185 and 0.004, respectively. Therefore, we selected ARMA (0,0,1) instead of ARMA 

(0,0,2) for the first factor. 

For second Factor, Autoregressive order one (AR 1) parameters were 0.93 and the Moving 

Average order one (MA1) parameter was 0.567. Both parameters rejected the null hypothesis; the 

P-value was less than 0.05. However, the MA (2) parameters were estimated at 0.23and the 

p-value was 0.106 which was bigger than 0.05. Therefore, there is no presumption against the 

neutral hypothesis. The constant coefficient of the model was 0.35585991. Therefore, the ARIMA 

(1,0,1) was selected instead of the ARIMA (1,0,2). 

As indicated in Table 7, ten data of the first and second factor were compared to the ten 

predicted data of the first and second factor. Table 7 indicates the lower and upper confidence 

interval. The coefficient of determination between the first and second factor data and predicted 

data were 0.98 and 0.983 which may describe the reliability of the model. 

Nakhaei et al. (2011) developed a Box-Jenkins time series model for carbon monoxide of the 

Thohid tunnel in Tehran and the coefficient of determination between their observed and the 

predicted data was 0.7. Nevertheless, the coefficient of determination of this study of both factors 

were 0.98 and 0.983, respectively. All mentioned researchers used a Box-Jenkins time series 

model for each of the air quality parameters. Nonetheless, we developed two models for the first 

and second factor instead of seven air quality parameters. This caused time savings in developing 

models and air quality parameters. 

 

 

 
Table 7 The comparisons between the 1st and 2nd factor data with the predicted data 

No. 

The factors 

series data 

The values of 

transformed 

time series 

The predicted 

values 
Difference 

Lower 

confidence 

interval 

Upper 

confidence 

interval 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

1 1.39 0.46 0.38 -0.33 0.33 -0.37 0.05 0.03 0 0 0.75 0.57 

2 1.29 0.61 0.34 -0.21 0.32 -0.24 0.02 0.03 0 0 0.73 0.66 

3 0.96 0.55 0.33 -0.26 0.32 -0.28 0.01 0.02 0 0 0.73 0.67 

4 0.94 0.52 0.33 -0.28 0.32 -0.28 0.01 0.00 0 0 0.73 0.62 

5 1.19 0.25 0.28 -0.59 0.26 -0.59 0.02 0.00 0 0 0.62 0.31 

6 2.34 0.73 0.61 -0.13 0.59 -0.11 0.02 -0.02 0.19 0 1.00 0.78 

7 1.23 0.46 0.31 -0.33 0.31 -0.31 0.00 -0.02 0 0 0.73 0.60 

8 1.42 0.33 0.39 -0.48 0.41 -0.45 0.02 -0.03 0.06 0 0.76 0.45 

9 1.97 0.37 0.54 -0.43 0.57 -0.39 0.03 -0.03 0.23 0 0.91 0.52 

10 0.93 0.90 0.58 -0.04 0.57 -0.01 0.01 -0.03 0.15 0 0.99 0.92 
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4. Conclusions 
 

Considering the results of applying the factor analysis and the Box-Jenkins time series model to 

predict seven air qualities in Aghdaseyeh in the northeastern Tehran, we summarized the following 

conclusions: 
 

● Seven air quality parameters were converted in two factors in which the first factor was CO, 

NO2, NO, NOX, and O3, and the second factor was PM1O and SO2. 

● We determined ARIMA (1,0,0) for the first factor and ARIMA (1,0,1) for the second factor. 

● The coefficient of determination between the observed factor data and the predicted factor 

for both models were 0.98 and 0.983 which means the models may be reliable. 
 

We reduced seven Univariate Box-Jenkins to two models which reduces time consumed for 

developing models. 
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