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Abstract.  The aim of this paper is to remove the rigid body motion in the interior boundary value problem (BVP) 
of plane elasticity by solving the interior and exterior BVPs simultaneously.  First, we formulate the interior and 
exterior BVPs simultaneously. The tractions applied on the contour in two problems are the same. After adding and 
subtracting the two boundary integral equations (BIEs), we will obtain a couple of BIEs. In the coupled BIEs, the 
properties of relevant integral operators are modified, and those integral operators are generally invertible. Finally, a 
unique solution for boundary displacement of interior region can be obtained. 
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1. Introduction 

 
In the boundary integral equation (BIE) method of plane elasticity, we will meet two kinds of 

non-unique solution for BIE. If one considers the boundary value problem after discretization, the 

relevant influence matrix may be singular.  

The first kind of non-unique solution for BIE can be found in the Neumann boundary value 

problem (BVP) for interior region. The second kind of non-unique solution for BIE can be found 

in the Dirichlet boundary value problem, typically, for the exterior region. Under some particular 

scale which is generally called the degenerate scale, the traction solution in the domain exists even 

the assumed displacements take the vanishing value along the boundary. 

It was pointed out that in the Neumann boundary value problem for interior region in the 

boundary integral equation of plane elasticity, the solution for displacement is not unique 

(Blazquez et al. 1996). Several techniques were suggested for removal the rigid body motion in 

the solution. For the Dirichlet boundary value problem of interior region, the conventional 

boundary integral equation (BIE) is enriched by adding constants and corresponding constraints 

(Chen et al. 2016). Even the used scale is degenerate one, a unique solution can be obtained from 

the enriched BIE. Degenerate scales appear in the solution of some boundary integral equations 

(BIE) (Vodi𝑐̆ka and Petrik 2015). When one uses the degenerate scale as a real scale in derivation 

or computation in the Dirichlet BVP, the BIE has either multiple solutions or does not have a 
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solution. For a general anisotropic material, the solution for the degenerate scale was provided. 

Some recent works have shown that usage of conformal mapping can lead to exact values of the 

degenerate scales in plane elasticity (Corfdir and Bonnet 2015). 

Degenerate scale for multiply connected Laplace problems was studied (Chen and Shen 2007). 

In the paper, authors utilize the null-field integral equation to analytically study the degenerate 

scale problem. A numerical solution was provided for the degenerate scale in antiplane elasticity 

using the null field boundary integral equation (BIE) (Chen 2016). 

A local radial point interpolation method was presented and applied to solid mechanics (Liu et 

al. 2002). A group of meshfree methods based on boundary integral equation have been developed 

(Gu and Liu 2004). An exact integration for the hypersingular boundary integral equation of two-

dimensional elastostatics was suggested (Zhang and Zhang 2020). 

For Laplace’s equation in circular domains with circular holes, the null field method was 

suggested. (Lee et al. 2015). The stress concentration factor (SCF) along the boundary of a hole 

and a rigid inclusion in an infinite isotropic solid under the anti-plane shear was studied by using 

the degenerate kernels (Chen et al. 2021a). The stress intensity solution for crack problem was 

studied by using J-integral and boundary equation method (Chen et al. 2021b). Degenerate scale of 

line segments was derived in this paper (Chen et al. 2020) It was pointed that there were two kinds 

of rank-deficiency problems in the boundary element method (BEM) (Chen et al. 2014). 

Static analysis of the free-free trusses by using a self-regularization approach was carried out 

(Chen et al. 2018). A Total BETI (TBETI) based domain decomposition algorithm with the 

preconditioning by a natural coarse grid of the rigid body motions is adapted for the solut

ion of contact problems of linear elastostatics (Bouchala et al. 2009) 

The aim of this paper is to remove the rigid body motion in the interior BVP of plane elasticity 

by solving interior and exterior BVPs simultaneously. First, we formulate the interior and exterior 

BVPs simultaneously. The tractions applied on the contour in two problems are the same. After 

adding and subtracting the two BIEs obtained, we will obtain a couple of BIEs. In the coupled 

BIEs, the properties of relevant integral operators are modified, and those integral operators are 

generally invertible. Therefore, a unique solution for the coupled BIEs will be evaluated. Finally, 

by using this method for the Neumann BVP of an interior region, a unique solution for the 

displacement is obtainable. The rigid body motion solution for the displacement is removed in the 

suggested method. Several numerical examples are provided to prove efficiency of the suggested 

method. 

 
 

2. Analysis 
 

Analysis presented below mainly depends on two kinds of integral equation. Therefore, the 

boundary integral equations for interior region and exterior region are introduced.  

 

2.1 Complex variable boundary integral equations for interior region and exterior region 
 

Recently, the complex variable boundary integral equation (CVBIE) for the interior region was 

suggested (Chen and Wang 2015) (Fig. 1(a)) 

𝑈(𝑡𝑜)

2
+ 𝐵1𝑖 ∫ (

𝜅 − 1

𝑡 − 𝑡𝑜
𝑈(𝑡)𝑑𝑡 − 𝐿1(𝑡, 𝑡𝑜)𝑈(𝑡)𝑑𝑡 + 𝐿2(𝑡, 𝑡𝑜)𝑈(𝑡)𝑑𝑡)

𝛤

 (1) 
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= 𝐵2𝑖 ∫ (2𝜅 𝑙𝑛|𝑡 − 𝑡𝑜| 𝑄(𝑡)𝑑𝑡 +
𝑡−𝑡𝑜

𝑡̄−𝑡̄𝑜
𝑄(𝑡)𝑑𝑡̄)

𝛤
, (𝑡𝑜 ∈ 𝛤) 

where 𝛤  denotes the boundary of the interior region. In Eq. (1), U(t) and Q(t) denote the 

displacement and traction along the boundary, which are defined by  

𝑈(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡), 𝑄(𝑡) = 𝜎𝑁(𝑡) + 𝑖𝜎𝑁𝑇(𝑡), (𝑡 ∈ 𝛤) (2) 

The definition for 𝑈(𝑡) = 𝑢(𝑡) + 𝑖𝑣(𝑡), 𝑄(𝑡) = 𝜎𝑁(𝑡) + 𝑖𝜎𝑁𝑇(𝑡) (𝑡 ∈ 𝛤) can be found from 

Fig. 1.  

In addition, two elastic constants and two kernels are defined by 

𝐵1 =
1

2𝜋(𝜅+1)
,  𝐵2 =

1

4𝜋𝐺(𝜅+1)
 (3) 

𝐿1(𝑡, 𝜏) = −
𝑑

𝑑𝑡
{𝑙𝑛

𝑡−𝜏

𝑡̄−𝜏̄
} = −

1

𝑡−𝜏
+

1

𝑡̄−𝜏̄

𝑑𝑡̄

𝑑𝑡
, 𝐿2(𝑡, 𝜏) =

𝑑

𝑑𝑡
{

𝑡−𝜏

𝑡̄−𝜏̄
} =

1

𝑡̄−𝜏̄
−

𝑡−𝜏

(𝑡̄−𝜏̄)2

𝑑𝑡̄

𝑑𝑡
 (4) 

where 𝜅 = 3 − 4𝜈 (for plane strain condition), 𝜅 = (3 − 𝜈)/(1 + 𝜈) (for plane stress condition), 

G is the shear modulus of elasticity, and 𝜈is the Poisson’s ratio. In this paper, the plane strain 

condition and 𝜈 = 0.3  are assumed. In Eq. (1) the increment “dt” is going forward in an 

counterclockwise direction. 

In the interior BVP, the boundary traction 𝑄(𝑡) = 𝜎𝑁(𝑡) + 𝑖𝜎𝑁𝑇(𝑡)  should satisfy the 

following equilibrium condition 

∫𝛤
𝑄𝑑𝑡 = 0, 𝑅𝑒 ∫𝛤

𝑄𝑡̄𝑑𝑡 = 0 (5) 

It is known that if the condition shown by Eq. (5) is satisfied, the BIE shown by Eq. (1) has 

many solutions. However, the existing solutions are not unique in general and they are different 

each other by the rigid body motions.  

In the meantime, we define three rigid body displacement modes along the boundary as follows 

𝑈(1)(𝑡) = 1, (or u=1, v=0, for 𝑡 ∈ 𝛤) (6a) 

𝑈(2)(𝑡) = 𝑖, (or u=0, v=1, for 𝑡 ∈ 𝛤) (6b) 

𝑈(3)(𝑡) = 𝑖𝑡, (or 𝑢 = −𝑦𝑡, 𝑣 = 𝑥𝑡, with 𝑡 = 𝑥𝑡 + 𝑖𝑦𝑡, for 𝑡 ∈ 𝛤) (6c) 

Clearly, 𝑈(𝛾)(𝑡) (𝛾 =1,2,3) represent three rigid motions for the boundary 𝑡 ∈ 𝛤.  It has been 

shown that 𝑈(𝑡) = 𝑈(𝛾)(𝑡) (𝛾 =1,2,3) and Q(t)=0 is a solution of BIE shown by Eq. (1) (Chen 

and Wang 2015).  

Generally, if one uses the BIE shown by Eq. (1) to an exterior boundary value problem, the 

increment “dt” should be going forward in a clockwise direction (Fig.1(b)). However, it is 

preferable to define increment “dt” in the anti-clockwise direction. In the case for the exterior 

boundary value problem (Fig. 1(b)), from Eq. (1) the relevant BIE for the exterior problem should 

be written as 

𝑈(𝑡𝑜)

2
− 𝐵1𝑖 ∫ (

𝜅 − 1

𝑡 − 𝑡𝑜

𝑈(𝑡)𝑑𝑡 − 𝐿1(𝑡, 𝑡𝑜)𝑈(𝑡)𝑑𝑡 + 𝐿2(𝑡, 𝑡𝑜)𝑈(𝑡)𝑑𝑡)
𝛤

 

= −𝐵2𝑖 ∫ (2𝜅 𝑙𝑛|𝑡 − 𝑡𝑜| 𝑄(𝑡)𝑑𝑡 +
𝑡−𝑡𝑜

𝑡̄−𝑡̄𝑜
𝑄(𝑡)𝑑𝑡̄)

𝛤
,   (𝑡𝑜 ∈ 𝛤) 

(7) 
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Fig. 1 (a) Interior boundary value problem, (b) Exterior boundary value problem,  region define

d 

 

 

Note that in the exterior BVP, there is no constraint condition for the traction Q(t). In addition, 

for the arbitrarily assumed traction Q(t), there is a unique solution for displacement U(t).   
 

2.2 Derivation for removal of rigid body motion in interior problem under the Neumann 
boundary value condition 

 

In the formulation,𝑈1and 𝑄1 denote the displacement and traction components applied along 

the boundary of the interior region (Fig. 1(a)). In addition, 𝑈2and 𝑄2 denote the displacement and 

traction components applied along the boundary of the exterior region (Fig. 1(b)). We assume the 

vector 𝑄1used in the interior BVP and the vector 𝑄2used in the exterior BVP take the same value, 

or 𝑄1 = 𝑄2 = 𝑄. Cleary, the vector 𝑄 should satisfy the equilibrium conditions shown by Eq. (5).  

After using the assumed conditions in Eqs. (1) and (7), we will obtain the following boundary 

integral equations 

𝑈1(𝑡𝑜)

2
+ 𝐵1𝑖 ∫ (

𝜅 − 1

𝑡 − 𝑡𝑜

𝑈1(𝑡)𝑑𝑡 − 𝐿1(𝑡, 𝑡𝑜)𝑈1(𝑡)𝑑𝑡 + 𝐿2(𝑡, 𝑡𝑜)𝑈1(𝑡)𝑑𝑡)
𝛤

 

= 𝐵2𝑖 ∫ (2𝜅 𝑙𝑛|𝑡 − 𝑡𝑜| 𝑄(𝑡)𝑑𝑡 +
𝑡−𝑡𝑜

𝑡̄−𝑡̄𝑜
𝑄(𝑡)𝑑𝑡̄)

𝛤
, (𝑡𝑜 ∈ 𝛤, for interior problem) 

(8) 

𝑈2(𝑡𝑜)

2
− 𝐵1𝑖 ∫ (

𝜅 − 1

𝑡 − 𝑡𝑜

𝑈2(𝑡)𝑑𝑡 − 𝐿1(𝑡, 𝑡𝑜)𝑈2(𝑡)𝑑𝑡 + 𝐿2(𝑡, 𝑡𝑜)𝑈2(𝑡)𝑑𝑡)
𝛤

 

= −𝐵2𝑖 ∫ (2𝜅 𝑙𝑛|𝑡 − 𝑡𝑜| 𝑄(𝑡)𝑑𝑡 +
𝑡−𝑡𝑜

𝑡̄−𝑡̄𝑜
𝑄(𝑡)𝑑𝑡̄)

𝛤
, (𝑡𝑜 ∈ 𝛤,  for exterior problem) 

(9) 

After taking the following steps: (a) adding Eq. (9) to (8), (b) subtracting Eq. (9) from (8), we 

will find the following coupled boundary integral equations 

𝑈𝑎(𝑡𝑜)

2
+ 𝐵1𝑖 ∫ (

𝜅−1

𝑡−𝑡𝑜
𝑈𝑏(𝑡)𝑑𝑡 − 𝐿1(𝑡, 𝑡𝑜)𝑈𝑏(𝑡)𝑑𝑡 + 𝐿2(𝑡, 𝑡𝑜)𝑈𝑏(𝑡)𝑑𝑡)

𝛤
= 0, (𝑡𝑜 ∈ 𝛤) (10) 
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𝑈𝑏(𝑡𝑜)

2
+ 𝐵1𝑖 ∫ (

𝜅 − 1

𝑡 − 𝑡𝑜

𝑈𝑎(𝑡)𝑑𝑡 − 𝐿1(𝑡, 𝑡𝑜)𝑈𝑎(𝑡)𝑑𝑡 + 𝐿2(𝑡, 𝑡𝑜)𝑈𝑎(𝑡)𝑑𝑡)
𝛤

 

= 2𝐵2𝑖 ∫ (2𝜅 𝑙𝑛|𝑡 − 𝑡𝑜| 𝑄(𝑡)𝑑𝑡 +
𝑡−𝑡𝑜

𝑡̄−𝑡̄𝑜
𝑄(𝑡)𝑑𝑡̄)

𝛤
, (𝑡𝑜 ∈ 𝛤) 

(11) 

After making discretization to the coupled BIEs shown by Eqs. (10) and (11), we will obtain 

the following algebraic equations  

1

2
{𝑈𝑎}+[𝐻𝑈]{𝑈𝑏} = {0} (12) 

1

2
{𝑈𝑏}+[𝐻𝑈]{𝑈𝑎} = [𝐺𝑄]{𝑄} (13) 

where two vectors are defined by  

{𝑈𝑎}=({𝑈1} + {𝑈2}), {𝑈𝑏}=({𝑈1} − {𝑈2}) (14) 

Note that, the influence matrix [𝐻𝑈] in obtained after discretization of the integral operator 

𝐵1𝑖 ∫ (
𝜅−1

𝑡−𝑡𝑜
𝑈(𝑡)𝑑𝑡 − 𝐿1(𝑡, 𝑡𝑜)𝑈(𝑡)𝑑𝑡 + 𝐿2(𝑡, 𝑡𝑜)𝑈(𝑡)𝑑𝑡)

𝛤
, and the influence matrix [𝐺𝑄] in obtained 

after discretization of the integral operator 𝐵2𝑖 ∫ (2𝜅 𝑙𝑛|𝑡 − 𝑡𝑜| 𝑄(𝑡)𝑑𝑡 +
𝑡−𝑡𝑜

𝑡̄−𝑡̄𝑜
𝑄(𝑡)𝑑𝑡̄)

𝛤
. 

From Eq. (12), we have 

{𝑈𝑏} = −
1

2
[𝐻𝑈

−1]{𝑈𝑎} (15) 

Substituting Eq. (15) into (13) yields 

[𝐻𝑈𝐶]{𝑈𝑎} = [𝐺𝑄]{𝑄} (16) 

where 

[𝐻𝑈𝐶] =[𝐻𝑈] −
1

4
[𝐻𝑈

−1] (17) 

From Eq. (16), we have 

{𝑈𝑎}=[𝐻𝑈𝐶
−1][𝐺𝑄]{𝑄} (18) 

In addition, from and Eqs. (15) and (18), we can find the vector {𝑈𝑏}. Further, from Eq. (14) 

we can find two vectors {𝑈1} and {𝑈2}as follows 

{𝑈1}={𝑈𝑎} + {𝑈𝑏}, {𝑈2}={𝑈𝑎} − {𝑈𝑏} (19) 

Therefore, the solution for Neumann BVP for the interior region is obtained. 

For examining the validity of the suggested method, we must provide an exact solution 

beforehand. In the exact solution, the displacement and traction vector assumed along the 

boundary 𝛤 in the interior BVP are denoted by {𝑈1}𝑒𝑥𝑡 ,{𝑄}𝑒𝑥𝑡and {𝜎𝑇}𝑒𝑥𝑡, respectively (Figs. 1 

and 2). 

After taking the following steps: (a) substituting {Q}={𝑄}𝑒𝑥𝑡 into right hand side of Eq. (13), 

and (b) completing the computation from Eqs. (14) to (19), we will obtain a unique solution 

{𝑈1}𝑛𝑢𝑚.  

It is known that the relevant solution for the displacement vectors may be different each other 

by three rigid body motions. Therefore, it is inappropriate by comparing the obtained vector 
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{𝑈1}𝑛𝑢𝑚 with the vector {𝑈1}𝑒𝑥𝑡 directly.  

In fact, in the plane strain case, the strain component 𝜀𝑇 can be expressed from the Hook’s law 

as follows (Fig. 1(a)) 

𝜀𝑇 =
(1 − 𝜈2)𝜎𝑇 − 𝜈(1 + 𝜈)𝜎𝑁

2𝐺(1 + 𝜈)
 (20a) 

Alternatively, we can express this relation in the form 

𝜎𝑇 =
2𝐺(1 + 𝜈)𝜀𝑇 + 𝜈(1 + 𝜈)𝜎𝑁

1 − 𝜈2
 (20b) 

In Eq. (20), the component 𝜎𝑁  is from input data {𝑄}𝑒𝑥𝑡 , and 𝜀𝑇  is the strain in the T-

direction which can be evaluated from the numerical solution of displacements along the 

boundary, or from {𝑈1}𝑛𝑢𝑚. Thus, the values of 𝜎𝑇 at many discrete points along the boundary 𝛤 

can be evaluated. The stress component vector 𝜎𝑇  evaluated from Eq. (20) is denoted by 

{𝜎𝑇}𝑛𝑢𝑚. After comparing this vector {𝜎𝑇}𝑛𝑢𝑚 with the vector {𝜎𝑇}𝑒𝑥𝑡which is derived from the 

input data, we can judge the achieved accuracy accordingly. 

It is well known that the equilibrium condition must be satisfied along the boundary in the 

interior boundary value problem. In addition, the displacement in the solution may not be unique. 

In order to obtain a unique solution in the interior boundary value problem, one needs to remove 

three kinds of rigid body motions (Blazquez et al. 1996) 

In this paper, by solving the interior and exterior BVPs simultaneously, we need not to use the 

technique for removing three kinds of rigid body motions in the usual formulation. 
 

 

3. Numerical example 

 
One numerical example is provided to prove the efficiency of the suggested method. The plane 

strain condition and 𝜈 = 0.3 are assumed. In the example, we provide a numerical solution for the 

Neumann BVP for a finite elliptic plate under the following conditions (Fig. 2) 

𝜎𝑥 = 0, 𝜎𝑦 = 𝑝, 𝜎𝑥𝑦 = 0 (21) 

At the points along the boundary 𝛤, or 𝑥 = 𝑎 𝑐𝑜𝑠 𝜃 ,𝑦 = 𝑏 𝑠𝑖𝑛 𝜃, the boundary tractions from 

the exact solution can be expressed as  

𝜎𝑁 = 𝑝 𝑠𝑖𝑛2 𝛽,  𝜎𝑇 = 𝑝 𝑐𝑜𝑠2 𝛽, 𝜎𝑁𝑇 = 𝑝 𝑠𝑖𝑛 𝛽 𝑐𝑜𝑠 𝛽, 

(with 𝑐𝑜𝑠 𝛽 =
𝑏 𝑐𝑜𝑠 𝜃

√𝑎2 𝑠𝑖𝑛2 𝜃+𝑏2 𝑐𝑜𝑠2 𝜃
, 𝑠𝑖𝑛 𝛽 =

𝑎 𝑠𝑖𝑛 𝜃

√𝑎2 𝑠𝑖𝑛2 𝜃+𝑏2 𝑐𝑜𝑠2 𝜃
) (22) 

In addition, it is easy to obtain the relevant solution for displacement 

2𝐺(𝑢 + 𝑖𝑣) = −𝜈𝑝𝑥 + (1 − 𝜈)𝑝𝑦, (at point:  𝑥 = 𝑎 𝑐𝑜𝑠 𝜃, 𝑦 = 𝑏 𝑠𝑖𝑛 𝜃) (23) 

After solving the Neumann BVP for interior region by solving interior and exterior BVPs 

simultaneously, the computed results for 𝜎𝑇 are expressed as 

𝜎𝑇 = 𝑓1(𝜃)𝑝 , (at the point  𝑥 = 𝑎 𝑐𝑜𝑠 𝜃, 𝑦 = 𝑏 𝑠𝑖𝑛 𝜃) (24) 

For the following cases:  b/a=0.25 and 0.75, the computed results of 𝑓1(𝜃) (=𝜎𝑇/𝑝) are 

plotted in Fig. 3. The exact solution is also plotted in the figure.  We see from Fig. 3 that the 

numerical results are very accurate. 
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Fig. 2 Interior boundary value problem under the stress state (a) 𝜎𝑥 = 0, 𝜎𝑦 = 𝑝, 𝜎𝑥𝑦 = 0 or (b) 

𝜎𝑥 = 0, 𝜎𝑦 = 0, 𝜎𝑥𝑦 = 𝑞 

 

 
Fig. 3 Non-dimensional stress 𝑓1(𝜃) (=𝜎𝑇/𝑝) in the Neumann BVP under the conditions: (1) b/a=0.25 or 

b/a=0.75, (2) 𝜎𝑥 = 0, 𝜎𝑦 = 𝑝,  𝜎𝑥𝑦 = 0 ( see Eq. (24), Figs. 1 and 2) 

 

 

4. Conclusions 
 

In this paper, the properties of relevant integral operators are modified. The modified integral 

operators are generally invertible. Finally, a unique solution for boundary displacement of interior 

region can be obtained without using the technique for removal of rigid body motion. 

In our formulation, the interior boundary value problem and the exterior boundary value 

problem are solved simultaneously. Therefore, the boundary traction 𝑄(𝑡) = 𝜎𝑁(𝑡) + 𝑖𝜎𝑁𝑇(𝑡) 

should satisfy the equilibrium condition. This is an inconvenient point in the formulation. 
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