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Abstract.  Water consumption is strongly affected by numerous factors, such as population, climatic, geographic, 
and socio-economic factors. Therefore, the implementation of a reliable predictive model of water consumption 
pattern is challenging task. This study investigates the performance of predictive models based on multi-layer 
perceptron (MLP), multiple linear regression (MLR), and support vector regression (SVR). To understand the 
significant factors affecting water consumption, the stepwise regression (SW) procedure is used in MLR to obtain 
suitable variables. Then, this study also implements three predictive models based on these significant variables (e.g., 
SWMLR, SWMLP, and SWSVR). Annual data of water consumption in Thailand during 2006 – 2015 were 
compiled and categorized by provinces and distributors. By comparing the predictive performance of models with all 
variables, the results demonstrate that the MLP models outperformed the MLR and SVR models. As compared to 
the models with selected variables, the predictive capability of SWMLP was superior to SWMLR and SWSVR. 
Therefore, the SWMLP still provided satisfactory results with the minimum number of explanatory variables which 
in turn reduced the computation time and other resources required while performing the predictive task. It can be 
concluded that the MLP exhibited the best result and can be utilized as a reliable water demand predictive model for 
both of all variables and selected variables cases. These findings support important implications and serve as a 
feasible water consumption predictive model and can be used for water resources management to produce sufficient 
tap water to meet the demand in each province of Thailand. 
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1. Introduction 

 

Over the past decades, fast-growing demand for water has been a global concern, especially in 

terms of household, agriculture, and industrial undertaking. Moreover, water provides a link 

between different elements in an ecosystem (Stampoulis et al. 2021). Many parts of the world are 

facing the risks of severe water scarcity situations (Yang et al. 2021). Water shortage has become a 
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major problem due to urbanization and industrialization (Wei et al. 2021). The discrepancy 

between water consumption and water supply has been notable particularly in the arid and semi-

arid regions and in areas with expanding populations. According to the 2020 UN World Water 

Development Report, the quality, quantity, and accessibility of water for billions of people will be 

affected by climate change. Changes in water circulation patterns also endangers and severely 

threatens the achievement of the Sustainable Development Goals (UN Water, 2020). Therefore, it 

is essential to accurately estimate or predict water demand for adequate production planning 

especially in areas where water is seasonally limited, and climate is very diverse. 

According to the National Strategy (2018–2037) of Thailand, the national development goals of 

the National Strategy are “a secure nation, contented people, continued economic growth, an equal 

society, and sustainable natural resources.” The accomplishment of these goals is expected to 

occur by promoting environmentally sustainable growth and quality of life and improving the 

proficiency of government agencies (National Strategy Secretariat Office 2019). Therefore, water 

management is critical for policymakers in refining the provision of water supply services to 

ensure water availability and sustainability in the future.  

The water demand management technique integrates demand and supply management such that 

future demand does not exceed water availability. In Addition, it can provide more feasible 

alternatives by enabling the integration of demand-side and supply-side management for enhanced 

water management (Xiao et al. 2021). Water consumption may be adversely affected by a large 

number of parameters, such as population growth and socio-economic, demographic, climatic, and 

geographic factors. The increasing water consumption is due to the increasing population, crop and 

livestock production and industrial plant (Stampoulis et al. 2021). To design a rule for water 

management, potential parameters influencing water demand should be examined in constructing a 

reliable water consumption predictive model. Thus, forecasting of water demand is vital for a 

proper management of provincial water systems. It is also essential for the operation of reservoirs 

provision, treatment plants, and distribution services. A reliable water consumption predictive 

model should also be capable of identifying the influencing factors affecting water storage and 

consumption reduction, water security, and urban sustainability. 

Different methods and models in statistical analysis and machine learning are widely applied to 

forecasting of varying fields, such as science, health science, fisheries, industry, and social 

sciences. Machine learning has the proficiency to minimize the computational time, cost, and 

errors involved. Recent research shows that machine learning method within the group of data-

driven is increasingly used to perform prediction as an attractive, rapid, and reliable computing 

tool. Machine learning techniques applied in prediction models include the support vector machine 

(SVM) (Agarwal et al. 2020), extreme learning machines (ELM) (Sattar et al. 2019, Abba et al. 

2020a, Campos et al. 2020), stepwise regression (SW) (Ghani et al. 2010, Ahmad and Chen 2018), 

multiple linear regression (MLR) (Al-Hamad and Qamber 2019, Oyebode and Ighravwe 2019), 

evolutionary computation (EC) (Oyebode et al. 2019), k-nearest neighbor algorithms (KNN) 

(Benitez et al. 2019), artificial neural networks (ANN) (Cetinkaya and Baykan 2020, Thinakaran 

et al. 2020, Sahu et al. 2021), and random forest (RF) (Sirisathitkul et al. 2019, Pahlavan-Rad et al. 

2020, Wongso et al. 2020). Stampoulis et al. (2021) illustrated the use of five machine learning 

models, i.e., linear regression, RF, KNN, support vector regression (SVR) and multi-layer 

perceptron (MLP) as a predictive model of precipitation rate and vegetation classification in east 

Africa for 2003 - 2011. Arora et al. (2021) examined the potential of SVM, RF, KNN, decision 

tree and naïve bayes in predicting prognosis of cervical cancer. 

The relevant literature on water demand forecasting is summarized in many published articles 
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(Donkor et al. 2014, Ghalehkhondabi et al. 2017, de Souza Groppo et al. 2019). Existing 

forecasting models differ according to the variables to be forecasted, forecasting time period, and 

management objectives. Water demand forecasting approaches may be classified as either linear or 

nonlinear models (Romano and Kapelan 2014). The linear methods are not effective in the case of 

the nonlinearity of water demand data (Candelieri et al. 2015). The machine learning techniques 

are superior to statistical methods due to their capability to handle the nonlinearity and imprecision 

of available data (Ghalehkhondabi et al. 2017). 

ANN, MLR, SW, and SVR models are the most common machine learning methods used and 

have been extensively applied to forecast water demand. Bata et al. (2020) used a self-organizing 

map (SOM) to investigate short-term water requirements in Southwestern Ontario, Canada. Yang 

et al. (2021) compared the performance of MLR, ANN and autoregressive state-space approach for 

China’s Loess Plateau streamflow estimation model. Smolak et al. (2020) compared the 

performance of water consumption forecasting by using SVR and the associated machine learning 

techniques. Several research papers have compared the water consumption forecasting efficiency 

between conventional regression models and several ANN models (Adamowski and Karapataki 

2010, Herrera et al. 2010, Abba et al. 2020b). Many previous studies suggested that the robust 

ANN technique was superior among all conventional models (Mouatadid and Adamowki 2016, 

Guo et al. 2018, Oyebode et al. 2019).  

Moreover, various researchers have applied different combinations of machine learning-based 

models or hybrid approaches for prediction. A hybrid model comprises two or more methods, one 

of which works as the fundamental model, while the others perform preprocessing or 

postprocessing techniques (Zubaidi et al. 2020b). For example, Abba et al. (2020a) applied the 

linear regression and SW models to predict the water quality index at Kinta River Basin in 

Malaysia. Wu and Zhou (2010) showed that the combination of linear regression and ANN models 

offers more accurate forecasts than those separately obtained from each model. The hybrid model 

BSA-ANN was constructed by Zubaidi et al. (2020a) to determine the monthly water demand in 

the Gauteng province of the Republic of South Africa, which intensely suffered from the impact of 

population growth and climate change. Altunkaynak and Nigussie (2018) revealed that hybrid 

models based on MLP were robust and insightful. Furthermore, the performance of water 

prediction models has been optimized by using data preprocessing techniques (Seo et al. 2018, 

Zubaidi et al. 2020a). Another relevant consideration involves choosing the best scenario of model 

input. Zubaidi et al. (2018) applied a variance inflation factor (VIF) value to designate the model 

inputs that drive the explanatory variables. 

According to the literature, it is noticeable that all studies in the context of prediction have 

shown the reliability of machine learning models. Many single models produce unacceptable 

results due to the limitation of the necessity of identifying suitable explanatory variables. Hence, to 

alleviate these shortcomings, it is necessary to develop a suitable selection approach for the 

appropriate variables and employ the combined techniques to enhance the accuracy of water 

consumption models. 

To address abovementioned problems, this study aims to select distinctive factors related to 

water usage and proposes a reliable predictive model to forecast water consumption. It is focused 

on a medium-term prediction (1–10 years) and employs historical data on water consumption. The 

model performance is assessed by using the standard statistical measures. The accuracy of 

appropriate models is essential to forecast the future water demand. The development of highly 

reliable models is also expected to perform a crucial role in planning provincial and metropolitan 

waterworks policies. 
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Fig. 1 Framework for the water consumption prediction 

 
 
2. Materials and methods 

 

The flowchart used in this analysis is depicted in Fig 1. This study starts with data collection. 

The missing data on factory amounts and registered capital are imputed by the exponential 

smoothing technique. The data is then passed to the statistics analysis and correlation and 

multicollinearity analyses. The developed models are trained and tested with 10 replications. A 

simple sampling method was used to randomize the data into training and testing dataset at a ratio 

of 70%:30%; with a total 750 observations, the training data corresponded to 70% of the 

measurement (525 of 750) and test data corresponded to 30% of the measurement (225 of 750). 

All six predictive models (e.g., MLR, MLP, SVR, SWMLR, SWMLP, and SWSVR) were 

implemented and tested using the R programming language and software environment on an 

Intel® Core™ i7-8550U CPU at 1.80 GHz, running a 64-bit Windows 10 operating system with 8 

GB RAM. The performance metrics are used to evaluate these models. The model with the highest 

index is selected. A detailed of each step is given as sub-section. 

 

2.1 Data collection 
 

This study used the annual data of water consumption amount from the metropolitan 

waterworks authority station and provincial waterworks authority stations during 2006 – 2015 for 

75 provinces across Thailand. The measured water consumption data were collected from open  
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Table 1 Summary of the response and explanatory variables employed for the water consumption predictive 

model 

Variable type Category Variable name Type Description 

Response Water supply Water amount Numeric - 

Explanatory 

Water consumption 

Tap water type Nominal 
0 – Metropolitan 

1 – Provincial 

Sector Nominal 

0 – Central and East 

1 – North 

2 – North East 

3 – South 

Water supply user amount Numeric  

Water sales amount Numeric  

Geographic 

Population Numeric  

Area Numeric  

People per sq. km Numeric  

Climatic 

Mean dry bulb temperature Numeric  

Mean maximum temperature Numeric  

Mean minimum temperature Numeric  

Mean msl pressure Numeric  

Mean relative humidity Numeric  

Mean station pressure Numeric  

Total rainfall Numeric  

Std total rainfall Numeric  

Industry 

information 

Factory amount Numeric  

Registered capital Numeric  

Worker amount Numeric  

Household 

information 

Average monthly income Numeric  

Average monthly expenditure Numeric  

Average debt per household Numeric  

Number of households Numeric  

 

 

data, which were assembled from publicly open sources, such as the official website of Open 

Government Data of Thailand (Digital Government Development Agency 2019), National 

Statistical Office of Thailand (National Statistical Office 2019), and Thai Meteorological 

Department (Thai Meteorological Department 2019).  

For the purposes of this analysis, the 22 explanatory variables are grouped into five categories, 

including water supply, geographic, climatic, and industrial information, as well as household 

information. It should be noted that water consumption data are available at every 5-year period 

and the explanatory variables are refined to match the time frames of response variable. The 

variables of the annual averaged data for the 10-year period between 2006 and 2015 from 75 

provinces with 750 instances. In this study, the water amount is used as a response variable, and 

other variables are used as explanatory variables as shown in Table 1.  
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2.2 Statistics analysis and correlation and multicollinearity analyses 
 

The data were processed through an initial exploratory analytical investigation on each input by 

checking the normal distribution, linearity, and multicollinearity between independent variables. 

The normal distribution of all independent variables must be investigated by kurtosis and 

skewness coefficients. The existence correlation between the two variables was investigated by 

applying the Pearson correlation. The value of VIF indicated the presence of multicollinearity 

between independent variables in the model. This implies that these variable additions have no 

impact on the prediction accuracy. Thus, suitable explanatory variables were selected by applying 

the VIF value. Ghani and Ahmad (2010) suggested that the values of VIF greater than 5 or 10 

could be used to detect multicollinearity between independent variables. Based on practical 

consideration in our study, the VIF cutoff value should be greater than 10. Therefore, some of the 

independent variables violating this should be removed from the model. Out of 22 explanatory 

variables listed in Table 1, three variables namely: “Water supply user amount”, “People per sq. 

km” and “Number of households” are left out.   

 

2.3 Models development based on all variables 
 

2.3.1 Multiple Linear Regression (MLR) 
The MLR is a regression technique for analyzing the relationship between a single response 

variable and two or more explanatory variables. The mathematical formula is linear equations of 

the form:  

𝑦 =  𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯+ 𝑏𝑛𝑥𝑛  (1) 

where 𝑦 is the response variable;  𝑥1, 𝑥2, … 𝑥𝑛 are the 𝑛 known explanatory variables; and  

𝑏0, 𝑏1, 𝑏2, … 𝑏𝑛 are estimated parameter coefficients of intercept and slopes, respectively (Davis, 

2011).  

In this study, the MLR is used as a benchmark model. The MLR is used to evaluate the 

relationship among all 19 explanatory variables and the response variable. The coefficients and 

intercept values in the MLR equation are estimated by using an ordinary least squares (OLS) 

method. 

 

2.3.2 Multi-Layer Perceptron (MLP) 
The MLP is an ANN, structured as a multi-layer design based on the human nervous system. 

The MLP is the most common form of ANN, which has an input layer with one or more hidden 

layer connected to one output layer. The input variable (i.e., independent variable) can be either 

categorical or numeric types; however, the dependent variable must be numeric (Anand and 

Suganthi 2018, Farizawani et al. 2020). 

For this study, MLP is constructed with 19 nodes in the input layer, 14 nodes in three hidden 

layers (i.e., 8, 4, 2), and 1 node in the output layer. Each input variable was normalized to a [0, 1] 

interval, and the logistic activation function was utilized to define the output for each neuron in the 

hidden layer. The MLP was trained with the training dataset with a learning rate of 0.001, and the 

stopping criterion was either encountering the training goal or reaching the limit of 1,000 epochs. 

 

2.3.3 Support Vector Regression (SVR) 
The SVR is developed from SVM to provide acceptable solutions to nonlinear problems and 
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the provided dataset (Zhong et al. 2019, Smolak et al. 2020). For the multi-dimensional datasets, 

the multivariate regression was used as follows: 

𝑓(𝑥) = 𝜔𝑇𝒙 + 𝑏 (2) 

where 𝜔 ∈ 𝑹𝑛 is a weighted feature vector, 𝑏 is the intercept and x is the input vector in 𝑹𝑛. 

The SVR formulates this function as an optimization problem while minimizing the prediction 

error (Smolak et al. 2020). In this study, the SVR was constructed with 19 input variables and 

performed an epsilon regression and tuned method to train models with epsilon (𝜖) in 

0, 0.1, 0.2, … ,1 and a cost parameter with 22, 23, … , 29. 

 

2.4 Model development based on suitable variables 
 

2.4.1 Stepwise Multiple Linear Regression (SWMLR) 
The SW is a statistical regression method designed to select the suitable explanatory variables 

using an automatic procedure. In each step, the addition or subtraction of explanatory variables 

from the model are through a series of tests (e.g. F-tests, t-tests) to find a set of independent 

variables that significantly influence the dependent variable.  

For this study, the SWMLR was established by using the MLR with the OLS parameter 

estimation and stepwise procedure. All 19 explanatory variables were introduced into or removed 

individually from the stepwise regression equation. A series of AIC were performed for the 

selected explanatory variables in which the significance levels for F-to-enter and-to-remove were 

set at 0.05 and 0.05, respectively. The process was iterated until there were no more significant 

explanatory variables. A total of eight explanatory variables are selected out of 19 variables. 

SWMLR has also been used to detect the significant explanatory variables as demonstrated by 

Ahmad and Chen (2018) and Yang et al. (2021). 

 

2.4.2 Stepwise Multi-Layer Perceptron (SWMLP) 
The SWMLP employed the eight selected suitable explanatory variables from the SWMLR as 

input variables. It is constructed with eight nodes in the input layer, six nodes in two hidden layers 

(i.e., 4 and 2), and one node in the output layer. The learning rating and the stopping criterion are 

equal to those of the MLP.  

 

2.4.3 Stepwise Support Vector Regression (SWSVR) 
The SWSVR utilized the eight input variables to construct a function estimator in the predictive 

model with the same condition, as mentioned in the SVR. 

 

2.5 Model evaluation metrics 
 

Machine learning provides several approaches for partitioning experimental data, such as 

training/testing partitioning and cross-validation (Liu and Cocea 2017). In this study, 70% of the 

completed data was utilized for training, while 30% was designated for testing the models, as 

previously performed by (Ahmad and Chen 2018, Oyebode and Ighravwe 2019). The accuracy of 

each model in the training/testing stage is evaluated by calculating the difference between the 

predicted and real values in the holdout sample. The determination of the best model is based on 

these measures, with the minimum mean error used to obtain high accuracy of the future 

predictions. In this study, three sets of statistical measures were employed to investigate the 
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accuracy of the predictive model, including root mean-square error (RMSE), mean absolute 

percent error (MAPE), and coefficient of determination (R2), as suggested in (Oyebode and 

Ighravwe 2019, Abba et al. 2020a, Sahu et al. 2021). The best model was elected based on the 

lowest MAPE (Sahu et al. 2021), lowest RMSE, and highest R2 (Agarwal et al. 2020, Yang et al. 

2021). The details of these indices are expressed below: 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑁
𝑖=1

𝑁
 (3) 

𝑀𝐴𝑃𝐸 =  100
1

𝑁
∑

|𝑂𝑖 − 𝑃𝑖|

𝑂𝑖

𝑁

𝑖=1
 (4) 

𝑅2 =

[
 
 
 

∑ (𝑂𝑖 − 𝑂̅)(𝑃𝑖 − 𝑃̅)𝑁
𝑖=1

√∑ (𝑂𝑖 − 𝑂̅)2 × ∑ (𝑃𝑖 − 𝑃̅)2𝑁
𝑖=1

𝑁
𝑖=1 ]

 
 
 

 (5) 

where 𝑁 is the number of measurements, 𝑂𝑖 is the amount of water observed at sample i and 𝑃𝑖 

is the amount of water predicted at sample i, 𝑂̅ is an observed average of the amount of water and 

𝑃̅ is a predicted average of the amount of water. 

 

 

3. Results and discussions 

 

3.1 Statistics analysis and correlation and multicollinearity analyses 
 
All the data were analyzed using the R programming langue software package version 4.0.3 

and the associated framework. The statistical descriptions of numeric variables during 2006 – 

2015 are presented in Table 2. The water consumption variables exhibited variations in extended 

ranges, such as the water amount varying from 5.1525105 to 1.8351109 m3 and water supply 

user amount varying from 1,987 to 1.5584106 per person. The variation patterns of the water 

consumption parameters confirm the complex, nonlinear modelling process. The standard 

deviation values are close to the mean, and most skewness coefficient values were also low for the 

dataset. This indicates that the model fits the data well. According to the kurtosis coefficient 

values, most variables were normally distributed, with the exception of water supply user amount, 

people per sq. km, and number of households. 

 

 
Table 2 Basic descriptive statistics of water consumption numeric variables 

Category Variables Unit Minimum Maximum Mean 
Standard 

deviation 

Kurtosis 

coefficient 

Skewness 

coefficient 

Water 

consumption 

Water 

amount 
m3 

5.1525E 

+05 

1.8351E 

+09 

8.8497E 

+07 

3.4238E 

+08 
19.973 4.657 

Water 

supply 

Water 

supply user 

amount 

Person 1987.000 
1.5584E 

+06 

68642. 

365 

1.6812E 

+05 
53.851 7.0479 
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Table 2 Continued 

Category Category 
Categor

y 
Category Category Category Category Category Category 

Water 

supply 

Water sales 

amount 
m3 358675.000 

1.383E 

+09 

6.3554E 

+07 

2.4760E 

+08 
20.227 4.678 

Geographic 

Population Person 
193305. 

000 

5666264. 

000 

874647. 

107 

736015. 

713 
21.894 3.904 

Area km2 416.710 20493.960 6731.918 4687.950 0.712 1.008 

People per 

sq. km 

Person/

km2 
22.000 3612.000 247.960 487.265 30.377 5.223 

Climatic 

Mean dry 

bulb 

temperature 
C 23.725 29.241 27.211 0.975 1.730 -1.027 

Mean 

maximum 

temperature 
C 29.132 33.957 32.766 0.813 3.511 -1.166 

Mean 

minimum 

temperature 
C 19.018 25.332 22.847 1.320 0.471 -0.633 

Mean msl 

pressure 
Mb 1008.208 1010.813 1009.331 0.413 1.825 0.454 

Mean 

relative 

humidity 

% 69.526 83.699 75.765 3.299 -0.372 0.689 

Mean 

station 

pressure 

mb 938.916 1009.251 1001.009 10.448 14.673 -3.112 

Total 

rainfall 
mm 81.997 403.816 128.924 51.578 10.600 2.846 

Std total 

rainfall 
- 62.571 366.172 102.664 46.469 14.736 3.519 

Industry 

information 

Factory 

amount 
- 262.000 

19664. 

000 
1858.004 2470.558 25.486 4.464 

Registered 

capital 
THB 1623.000 

1083873. 

409 

70229. 

953 

150161. 

765 
17.964 3.887 

Worker 

amount 
- 2677.000 

575317. 

000 

52927. 

813 

102526. 

394 
12.307 3.400 

Household 

information 

Average 

monthly 

income 

THB 6544.000 
49190. 

800 

20223. 

499 
6543.656 2.028 1.069 

Average 

monthly 

expenditure 

THB 6332.000 
35023. 

700 

17634. 

290 
4785.037 1.065 0.947 

Average 

debt per 

household 

THB 5778.000 
386957. 

400 

129981. 

960 

51611. 

974 
1.575 0.606 

number of 

households 
- 54.647 2913.929 267.646 273.381 40.322 5.516 
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Fig. 2 Correlation matrix between the water consumption variables 

 

 
The strength and direction of the association between all water consumption variables via the 

correlation matrix are further analyzed and shown in Fig. 2. The Pearson correlation (r) is used to 
analyze the correlation between variables x and y in the predictive model. It is crucial to 
investigate the correlation coefficient between the water consumption variables because it 
illustrates the linear relation between the dependent and independent variables. 

Fig. 2 shows a quite weak correlation of the water amount with area, people per sq. km, mean 
maximum temperature, mean relative humidity, and mean station pressure (r = 0.0468, r = 0.0335, 
r = -0.0739, r = -0.0685, r = -0.0386, respectively). Positive correlation coefficients were obtained 
for water supply user amount and population and people per sq. km (r = 0.8299, r = 0.8927, 
respectively). There was strong evidence of a positive correlation between the population and 
factory amount and number of households (r = 0.8928, r = 0.9637, respectively). In addition, there 
was a substantial positive correlation between the mean minimum temperature and mean station 
pressure and mean dry bulb temperature (r = 0.8080, r = 0.8982, respectively). In contrast, there 
was a negative correlation between the people per sq. km and tab water type, r = -0.8724. For the 
multicollinearity analysis, the VIF was computed. The dependent variables with a high correlation 
coefficient of the VIF over 10 comprised population, people per sq. km, and mean minimum 
temperature. Only these three variables were removed from the explanatory variables. As a result, 
the 19 explanatory variables were entered into the MLR, MLP, and SVR models.  

It is challenging to predict the water consumption with many factors, thus reducing the 

complexity of input variables instead of large amounts of factors simplifies the analysis (Wei et al. 

2021). In this study, the SW procedure was used in the MLR to select the appropriate explanatory 

variables, as suggested by Ahmad and Chen (2018) and Yang et al. (2021). Therefore, eight 

suitable variables were obtained: water sales amount, mean dry bulb temperature, mean maximum 

temperature, mean msl pressure, mean relative humidity, total rainfall, factory amount, and 

average monthly income. The selected significant variables by SW are in the water supply, 

climatic and industry information categories. As stated by Xiao et al. (2021), most water usages 

come from the industrial sector. Subsequently, these variables were used as inputs for the SWMLP 

and SWSVR models. 
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Water amount 1.0000

Tab water type 0.1476 1.0000

Sector 0.1068 0.1411 1.0000

Water supply user amount 0.1377 -0.7212 -0.2476 1.0000

Water sale amount 0.9953 0.1427 0.1102 0.1446 1.0000

Population 0.1774 -0.5231 -0.0752 0.8299 0.1843 1.0000

Area 0.0468 0.2459 -0.0016 -0.1159 0.0468 0.3177 1.0000

People per sq. km 0.0335 -0.8724 -0.1955 0.8927 0.0359 0.6694 -0.3388 1.0000

Mean dry bulb temperature 0.1315 -0.3756 -0.0763 0.3315 0.1388 0.0402 -0.5630 0.4557 1.0000

Mean maximum temperature -0.0739 -0.1338 -0.0225 0.0734 -0.0749 -0.0812 -0.2748 0.1542 0.6731 1.0000

Mean minimum temperature 0.1590 -0.3897 -0.0770 0.3275 0.1708 0.0242 -0.6051 0.4516 0.8982 0.3679 1.0000

Mean msl pressure 0.1759 0.0752 0.1681 -0.0213 0.2003 -0.0052 -0.0221 -0.0642 0.0014 -0.1832 0.2664 1.0000

Mean relative humidity -0.0685 0.2223 -0.2228 -0.2426 -0.0720 -0.3008 -0.2191 -0.2198 -0.0510 -0.3000 0.2412 0.4865 1.0000

Mean station pressure -0.0386 -0.1373 -0.0398 0.0683 -0.0340 -0.2287 -0.6199 0.1884 0.7780 0.5439 0.8080 0.3118 0.3710 1.0000

Total rainfall -0.1330 -0.0113 -0.1058 -0.0373 -0.1409 -0.1288 -0.1614 -0.0126 -0.0649 -0.3480 0.1572 0.3641 0.6327 0.2150 1.0000

Std total rainfall -0.1613 0.0232 -0.0238 -0.0575 -0.1701 -0.1429 -0.1305 -0.0605 -0.0758 -0.3491 0.1104 0.2417 0.3987 0.1064 0.7945 1.0000

Factory amount 0.2318 -0.6372 -0.0648 0.5790 0.2362 0.8928 0.0735 0.7684 0.2356 0.0524 0.1987 -0.0666 -0.3440 -0.0604 -0.1452 -0.1358 1.0000

Registered capital 0.3947 -0.3273 0.0283 0.3636 0.4173 0.2558 -0.1880 0.3263 0.3770 0.1486 0.4070 0.0617 -0.0996 0.1590 -0.1495 -0.1756 0.4404 1.0000

Worker amount 0.3902 -0.6672 -0.1029 0.7580 0.3985 0.5912 -0.2314 0.7355 0.4622 0.1955 0.4459 -0.0091 -0.2345 0.1614 -0.1386 -0.1498 0.5257 0.6838 1.0000

Average monthly income 0.2232 -0.4422 -0.2451 0.5385 0.2204 0.3049 -0.3091 0.5575 0.4730 0.1702 0.5327 0.1525 0.1817 0.4014 0.1364 0.0170 0.4098 0.3551 0.4901 1.0000

Average monthly expenditure 0.3013 -0.4821 -0.1780 0.5238 0.3061 0.2634 -0.3626 0.5851 0.5351 0.1495 0.6181 0.2059 0.1259 0.4412 0.0740 -0.0468 0.3854 0.4045 0.5349 0.8319 1.0000

Average debt per household 0.1309 -0.2409 -0.0521 0.2453 0.1288 0.1806 -0.0540 0.2365 0.2287 0.1865 0.1747 -0.0683 -0.1254 0.1199 -0.1069 -0.1196 0.1917 0.1353 0.1789 0.5525 0.4921 1.0000

Number of household 0.1369 -0.5813 -0.1641 0.5986 0.1415 0.9637 0.2059 0.7367 0.1093 -0.0353 0.0880 -0.0400 -0.2949 -0.1645 -0.1093 -0.1169 0.5092 0.2807 0.6472 0.3746 0.3222 0.1897 1.0000
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Table 3 Performance results for the MLR, MLP, SVR, SWMLR, SWMLP, and SWSVR models 

No. of input Model Training Testing 

variables  RMSE MAPE R2 RMSE MAPE R2 

19 

MLR 0.0235 2.5097 0.9925 0.0328 3.2460 0.9296 

MLP 0.0144 1.7099 0.9979 0.0247 2.3535 0.9829 

SVR 0.0535 4.3076 0.9582 0.0688 4.7494 0.9130 

8 

SWMLR 0.0257 2.5097 0.9299 0.0356 3.2512 0.9924 

SWMLP 0.0132 1.9772 0.9972 0.0248 2.9330 0.9844 

SWSVR 0.0535 4.5668 0.9575 0.0826 4.9348 0.8899 

 

 
Fig. 3 Box plot of the average RMSEs of the six predictive models 

 

 

3.2 Model comparison 
 

The evaluation measurements of the model in which 19 explanatory variables were entered into 

the MLR, MLP, and SVR models, as presented in Table 3. The SWMLR, SWMLP, and SWSVR 

models with the selected eight explanatory variables are also compared in the table. 
According to Agarwal et al. (2020), the RMSE is one of the principal predictive quantitative 

measures for evaluating the performance of machine learning models. Hence, the minimum values 

of the RMSE varied in the range of 0.0132–0.0826 for the training and testing, respectively. 

According to the results, the MLP models exhibited the best performance, while the SWSVR 

models had the worst performance in the testing phase consistent with the report by Smolak et al. 

(2020). Furthermore, the quantitative results indicated that the MLP with the RMSE = 0.0247 and  
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Table 4 Kruskal–Wallis chi-square test statistics for the RMSE in the testing phase of the six predictive 

models 

Kruskal-Wallis rank sum test 

Kruskal-Wallis chi-squared (2) = 39.838 df = 5 p-value = 0.0000 

Pairwise comparisons using Wilcoxon rank sum test 

 MLR SWMLR MLP SWMLP SVR 

SWMLR 0.7859 - - - - 

MLP 0.0807 0.0807 - - - 

SWMLP 0.1111 0.1111 0.9705 - - 

SVR 0.0005 0.0032 0.0005 0.0005 - 

SWSVR 0.0006 0.0032 0.0005 0.0005 0.6582 

 

 

MAPE = 2.3535 in the testing phase exhibited superior prediction skills among the other models 

and then emerged as a reliable predictive model. The analysis yielded the highest accuracy of all 

evaluation indices for the MLP except R2 for the SWMLP. Moreover, box plots are commonly 

used to illustrate the accuracy of the prediction by the model (Abba et al. 2020a). Fig. 3 presents 

the box plot of the RMSE in 10 replications in the testing phase of the six predictive models. The 

best predictive model was clearly the MLP, the values output by which did not exhibit a large 

variation. In the follow-up prediction patterns, the MLP model was the most competent and 

reliable prediction tool for all forecasting scenarios. 

For the models with a fewer number of variables, the SWMLP had the highest performance in 

the prediction (RMSE = 0.0248, MAPE = 2.9330). The SWMLR model demonstrated the best 

performance in the prediction (R2 = 0.9924). The predicting performance of the SWSVR was 

deteriorated drastically compared to the other models. For the testing phase, the RMSE of the 

MLP and SWMLP models was comparable (RMSE = 0.0247, RMSE = 0.0248, respectively). As 

noted by Olyaie et al. (2017), an independent variable with a low skewness coefficient is 

appropriate for ANN models. Because the eight variables used in the SWMLP had a low skewness 

coefficient, the SWMLP, thus, had a closer performance to the MLP. However, the SWMLP 

excluded 11 variables as they had no significance in the prediction. This exclusion resulted in 

comparable performance of the model to the MLP model that used 19 explanatory variables as 

inputs. Considering the value of the forecasting time and cost, the use of a large number of 

independent variables to create predictive equations tended to result in considerable model 

complexity, which was notably time consuming and required greater computational resources. 

Therefore, if the performance of the prediction was not greatly different, it can be concluded that a 

method using fewer independent variables was better than that with more independent variables. 

The Kruskal–Wallis test, a non-parametric comparison test method, was also used to order the 

significance of the input variables. The p-values measure the strength of the association between 

dependent and independent variables. In addition, the Wilcoxon’ rank sum test was used to 

calculate the pairwise comparisons between models. The pairwise comparison method identifies 

which pairs are significantly different. Comparing the six predictive models in Table 4, the outputs 

of the Kruskal–Wallis test indicated a statistically significant difference (p-value = 0.0000). 

Meanwhile, the Wilcoxon rank sum test showed that the SVR and SWSVR models were different 

from the other models. 
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4. Conclusions 
 

In this study, the performance of combined models was assessed to determine annual water 

consumption based on previous water usage. Historical data of yearly water consumption in each 

province over 10 years in Thailand were utilized to construct and assess the predictive models. The 

outcomes showed that the SW procedure could be used to select significant variable for MLR, 

MLP, and SVR models to simulate the water consumption for provincial waterworks in Thailand. 

Moreover, the SW procedure was successfully applied to select the distinctive explanatory 

variables. The benefits of using a small set of input are evading the time-costly computations, 

easing the modeling problem. It leads to a nimble and optimized predictive model, and also the 

most agile and optimal learning modules. The overall outcome has demonstrated that the MLP and 

SWMLP proved effective and satisfactory based on the fitness function (i.e., RMSE) and, hence, 

served as a reliable predictive model. Such a model could be of benefit in providing a reliable 

water supply to meet the demand of household and industrial sectors while alleviating excessive 

water consumption.  

The results of this study highlight the remarkable ability of machine learning models to 

determine relationship of water consumption to five categories, including water supply, 

geographic, climatic, and industrial information, as well as household information. The most 

selected variables by SW are in the climatic category, expressing the relationship between water 

consumption activities and climatic factors. It is then of great importance to systematically 

examine their impact on water’ regime with the local climate. Future research is required to clarify 

these relationships for sustainable water management in water-stressed regions. 
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