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Abstract.  In earthquake engineering, vibration control is a set of engineering tools aimed at mitigating seismic 
effects on structural members. Once the seismic waves have penetrated a building, there are a number of ways to 
control them to mitigate their damaging effects and improve the seismic performance of the building. Dissipate the 
wave energy inside the structure with properly designed dampers, distributing the wave energy over a wider 
frequency range and absorbing the resonant portions of the entire wave frequency band using what are known as 
mass dampers. The effect of mass attenuator on the reduction of fundamental frequency of beams made of 
functionally graded material (FGM) with annular and rectangular cross sections is studied. Mori-Tanaka 
homogenization scheme, conventional mixing rule and power law functions are used to model the material 
gradation. Various classical boundary conditions as well as shear hinge natural condition are considered. The lumped 
mass attenuator is connected to the beam at an arbitrary position without sliding. The total potential energy is 
minimized by using the spectral Ritz method to calculate the fundamental frequency and the corresponding mode 
shape. A reduction in the frequencies is observed in the presence of the attached lumped mass attenuator. The 
dimensionless frequency reduction is affected by the amount and position of the lumped mass. The position of the 
lumped mass attenuator plays an important role in vibration control of the beam.  
 

Keywords:  classical beam theory; lumped mass damper; material gradation; spectral ritz method; 

vibration analysis  

 
 
1. Introduction 

 

In earthquake engineering, vibration control is a set of engineering tools aimed at mitigating 

seismic effects on buildings and other structures. Passive control devices have no feedback 

capability between them, structural elements, and the ground. The active control devices include 

real-time ground recording instruments integrated with earthquake input processing devices and 

actuators within the structure and hybrid control devices combine the features of active and 

passive control systems. Once the seismic waves have penetrated a building, there are a number of 

ways to control them to mitigate their damaging effects and improve the seismic performance of 

the building. Dissipate the wave energy inside the structure with properly designed dampers, 

distributing the wave energy over a wider frequency range and absorbing the resonant portions of 
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the entire wave frequency band using what are known as mass dampers. 

For passive vibration control, the nonlinear vibration absorbers are studied in detail. The exact 

nonlinear dynamics of a simply supported beam carrying a nonlinear spring-inerter-damper energy 

absorber to reduce primary resonant vibration reduction is investigated. For this purpose, the 

analytical model and nonlinear dynamic responses for a beam-spring-inerter-damper system are 

derived (Zuo and Qian 2021). The effects of sand size and volume fraction on the damping of free 

vibration of a beam are investigated. A high-speed camera was used to measure the damping ratio 

of the beam vibration. It is found that the damping ratio for partially filled beams is larger than that 

for completely filled and empty beams. It is also found that the maximum damping ratio occurs at 

different mass fractions (Hashemnia 2021). The vibration control of a rotating beam made of 

functional gradient material (FGM) under thermal conditions is investigated using an enhanced 

active constrained layer damping (EACLD) method. The mentioned model is an extension of a 

newly developed dynamic model for EACLD composite beams. The difference is that the base 

beam is made of temperature-dependent FGM, which is widely used in the aerospace industry as 

an advanced heat-resistant composite material, and the temperature dependence of the viscoelastic 

material in the constrained layer is also considered (Fang et al. 2021). The effect of edge relaxation 

on the free vibration properties of a rotating laminated Timoshenko composite beam is 

investigated. Based on the first-order shear theory, the theoretical model of the rotating laminated 

Timoshenko composite beam is established, in which the possion effect is also considered. The 

relaxed boundary conditions of the beam are simulated with a series of artificial springs. By 

adjusting the stiffness of the springs, varying degrees of relaxed boundary conditions of the beam 

can be obtained. Relaxation parameters are introduced to evaluate the extent of boundary 

relaxation. A unified formula for the centrifugal force of the rotating beam with relaxed boundary 

conditions is derived (Xu et al. 2021). The vibration characteristics of a cantilever L-shaped beam 

perpendicular to the horizontal plane are investigated. The dynamic model of the L-shaped 

multicarrier structure is established using Euler-Bernoulli beam theory, including the vibration 

equations of each substructure, the fitting conditions of the connection and the boundary 

conditions. Based on the modal orthogonality, a discrete dynamic model with finite degrees of 

freedom is established. Then the distributed piezoelectric energy harvester is proposed to collect 

the vibration energy of the L-shaped beam (Cao et al. 2021). The eigensolutions of the non-

viscous damped systems are performed based on the fixed point iteration (Lázaro 2018). The smart 

damping layer under a plate subjected to a pair of masses moving in opposite directions is 

elaborated (Bajer et al. 2017). The boundary friction damping (Yang et al. 2019), vibration 

problems of composite shells (Kiani et al. 2018) and plates (Rani and Lal 2019) and optimization 

problem of composite structures under vibration and buckling loads (Akbulut et al. 2020) are 

studied. The many relevant works can be found in literature (She et al., 2021, Zhang et al. 2021, 

Lu et al. 2021, Heydari and Shariati 2018, Heydari et al. 2017, Heydari 2018, Heydari 2018, 

Heydari 2015, Heydari 2013, Heydari and Jalali 2017, Heydari and Li 2021, Heydari 2020). 

In the present work, the effect of the position of the lumped mass damper on the reduction of 

the fundamental frequency of the FGM beam with annular and rectangular cross sections is 

investigated. The volume fraction distribution of the functionally graded material is used to model 

the mass density. The lumped mass is connected to the beam at an arbitrary position without 

sliding. The FGM beam has a small thickness to length ratio, so the total potential energy is 

derived based on Euler-Bernoulli beam theory. The total potential energy is minimized by applying 

the spectral Ritz method to calculate the fundamental frequency and the corresponding mode 

shape. The various classical boundary conditions including simply supported beam, clamped  
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(a) transversly (b) radially graded 

Fig. 1 The FGM beam with lumped mass damper 

 

 

beam, pinned-clamped beam and cantilever beam as well as shear hinge natural condition are 

considered. A reduction in frequencies is observed in the presence of a lumped mass damper. 

However, the dimensionless frequency reduction is a function of the amount and position of the 

lumped mass, but the position of lumped mass has a more important effect on the vibration control 

of the functionally graded beam. Convergence of numerical results is observed by using small 

terms in the basis. 

 

 

2. Vibration Analysis 
 

The Fig. 1 illustrates a functionally graded beam and an attached lumped mass damper. The 

length, width and height of the beam are L, b and h respectively. The position of the lumped 

mass damper is measured from the left end of the FGM beam. The mass of the ring will be 

considered in terms of the total mass of the FGM beam. 

The total potential energy of the functionally graded beam and connected lumped mass, 𝑚, at 

position 𝑋 from left end of the beam is written as follows: 

𝛱 =
1

2
∫ (𝐸𝐼𝑒𝑞(𝑤

′′)2 − 𝑚̅𝑒𝑞𝑤
2𝜔2)𝑑𝑥 −

1

2
𝑚(𝑤|𝑥=𝑋𝜔)

2,
𝐿

0

 (1) 

where, 𝐸𝐼𝑒𝑞 and 𝑚̅𝑒𝑞 are equivalent flexural rigidity and equivalent mass per unit length of the 

functionally graded beam. The deflection of the FGM beam is 𝑤. The parameter 𝜔 denotes 

natural angular frequency of the free vibration. In the Mori–Tanaka homogenization scheme the 

effective bulk modulus, 𝐾𝑒, and effective shear modulus, 𝜇𝑒, can be calculated from Eqs. (2) and 

(3). 

𝐾𝑒 − 𝐾𝑚
𝐾𝑐 −𝐾𝑚

=
𝑉𝑐

1 +
𝑉𝑚(𝐾𝑐 − 𝐾𝑚)

𝐾𝑚 +
4𝜇𝑚
3

 
 

(2) 

𝜇𝑒 − 𝜇𝑚
𝜇𝑐 − 𝜇𝑚

=
𝑉𝑐

1 +
𝑉𝑚(𝜇𝑐 − 𝜇𝑚)

𝜇𝑚 +
𝜇𝑚(9𝐾𝑚 + 8𝜇𝑚)
6𝐾𝑚 + 12𝜇𝑚

 
(3) 

The effective modulus of elasticity and Poisson’s ratio are 
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𝐸(𝑦) =
9𝐾𝑒𝜇𝑒

3𝐾𝑒 + 𝜇𝑒 
, (4) 

𝜈(𝑦) =
3𝐾𝑒 − 2𝜇𝑒 

6𝐾𝑒 + 2𝜇𝑒  
 (5) 

The distance between neutral axis position and mid-axis position is 𝑒. As a result, one can 

write 

𝐸𝐼𝑒𝑞 = 𝑏∫ (
9𝐾𝑒𝜇𝑒

3𝐾𝑒 + 𝜇𝑒 
) 𝑦2𝑑𝑦

ℎ
2
−𝑒

−
ℎ
2
−𝑒

 (6) 

The parameter 𝑒 can be obtained as follows: 

𝑒 =

∫ 𝐸(𝑦) × 𝑦𝑑𝑦
ℎ
2

−
ℎ
2

∫ 𝐸(𝑦)𝑑𝑦
ℎ
2

−
ℎ
2

 (7) 

The mass density distribution of the FGM beam is assumed as follows: 

𝜌(𝑦) = 𝜌𝑚𝑉𝑚 + 𝜌𝑐𝑉𝑐 (8) 

in which, 𝜌𝑚 and 𝜌𝑐 are mass density of the metal and ceramic constituents, respectively. The 

volume fraction of the phase materials are 

𝑉𝑐 = (
𝑦

ℎ
+
1

2
)
𝑛

 (9) 

𝑉𝑚 = 1 − (
𝑦

ℎ
+
1

2
)
𝑛

 (10) 

where 𝑛 is gradient index or material exponent parameter which takes non-negative real numbers. 

The linear mass density of the FGM beam is calculated as follows: 

𝑚𝑒𝑞 = 𝑏∫ 𝜌(𝑦)𝑑𝑦

ℎ
2

−
ℎ
2

, (11) 

The variation of the elasticity modulus in FGM tube is modeled via power law function as 

follows: 

𝐸(𝑟) = 𝐸0𝑟
𝑛 , (12) 

in which, 𝐸0 and 𝑛 are material constants. Because of the axisymmetric distribution of material, 

the neutral axis position coincides with mid-axis position. As a result, one can write 

𝐸𝐼𝑒𝑞 = ∫ ∫ 𝐸0𝑟
𝑛(𝑟 sin 𝜃)2

𝑅𝑜

𝑅𝑖

2𝜋

0

𝑟𝑑𝑟𝑑𝜃, (13) 
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The solution of the integration in Eq. (13) is 

𝐸𝐼𝑒𝑞 =

{
 

 
𝜋(𝑅𝑜

𝑛+4 − 𝑅𝑖
𝑛+4)

𝑛 + 4
      𝑛 ≠ −4

𝜋 ln (
𝑅𝑜
𝑅𝑖
)                     𝑛 = −4

, (14) 

The mass density distribution of the FGM tube is assumed as follows: 

𝜌(𝑟) = 𝜌0𝑟
𝑞 , (15) 

in which, 𝜌0 and 𝑞 are material constants. The linear mass density of the FG tube is calculated 

as follows: 

𝑚𝑒𝑞 = ∫ ∫ 𝜌0𝑟
𝑞

𝑅𝑜

𝑅𝑖

2𝜋

0

𝑟𝑑𝑟𝑑𝜃, (16) 

The solution of the integration in Eq. (16) is 

𝑚𝑒𝑞 =

{
 
 

 
 2𝜋𝜌0(𝑅𝑜

𝑞+2
− 𝑅𝑖

𝑞+2
)

𝑞 + 2
      𝑞 ≠ −2

2𝜋𝜌0 ln (
𝑅𝑜
𝑅𝑖
)                     𝑞 = −2

, (17) 

The spectral Ritz method is applied to calculate first frequencies of the system. The truncated 

Taylor series expansion of the deflection is selected as basis function and unknown coefficients. 

𝑤 = 𝑤̅ +∑ 𝑐𝑘𝑥
𝑘

𝑁

𝑘=4

, (18) 

The function 𝑤̅ includes the coefficients 𝑐0 to 𝑐3. After satisfying boundary and natural 

conditions, the coefficients 𝑐0 to 𝑐3 are calculated in terms of the remaining coefficients 𝑐4 to 

𝑐𝑁, consequently Eq.(12) is the general form of the deflection function for various end conditions 

of the FGM beam. For example, the function 𝑤̅ is calculated by satisfying 𝑤(0) = 𝑤′(0) =
𝑤′(𝐿) = 𝑊′′′(𝐿) = 0 for clamped-shear hinge end FGM beam. Substituting Eq. (18) into Eq. (1), 

one has 

Π = 𝑓(𝑐4, 𝑐5, … , 𝑐𝑁), (19) 

Minimizing total potential energy, yields 

𝜕𝛱

𝜕𝑐𝑖
= 0       4 ≤ 𝑖 ≤ 𝑁, (20) 

The characteristic equation will be obtained by considering nontrivial solution. To this purpose, 

determinant of the matrix of the coefficients must be vanished. The matrix of the coefficients is 

Hessian of the total potential energy. 

|𝐻𝑖𝑗| = |
𝜕2𝛱

𝜕𝑐𝑖𝜕𝑐𝑗
| = 0       4 ≤ 𝑖 ≤ 𝑁, 4 ≤ 𝑗 ≤ 𝑁, (21) 
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Fig. 2 Dimensionless fundamental frequency of the simply supported FGM beam 

 

 

After substituting angular frequency of damped vibration into Hessian of the total potential 

energy, [𝐻], the unknowen coefficients can be calculated in terms of an arbitrary coefficient, say 

𝑐𝑁, as follows: 

{

𝑎1
⋮

𝑎𝑁−1
} = −𝑎𝑁[𝐻

∗]−1{𝐻̃}      4 ≤ 𝑖 ≤ 𝑁, 4 ≤ 𝑗 ≤ 𝑁, (22) 

The square matrix [𝐻∗] is calculated by deleting last row and last column of the matrix [𝐻]. 

For calculating the vector {𝐻̃}, the last row of the matrix [𝐻] is deleted, afterwards the last 

column of the remained matrix is considered.  

Instead of a truncated Taylor series expansion of the deflection, one can use orthogonal 

polynomials such as the Legendre polynomials, which have a high rate of convergence. A set of 

elements in a space with inner product is orthogonal if the inner product of each pair of distinct 

elements is zero. A set of vectors in a space with inner product is orthogonal to another set if the 

inner product of every vector of the first set with every vector of the second set is zero. An 

orthogonal set in which the inner product of each element is one with itself is called orthonormal. 

A set of functions 𝑓1,..., 𝑓𝑛 (that may be infinite), of which every pair of distinct functions 

satisfies the identity 

∫ 𝑤̅(𝑥)𝑓𝑖(𝑥)𝑓𝑗(𝑥)
𝑏

𝑎

𝑑𝑥 =  0 (23) 

where 𝑤̅(𝑥) is a weight function, on some given range of integration ]a, b[, or for a more general 

set and measure. The complete set of orthogonal polynomials, 𝑃𝑖(𝑥), on [-1, 1], and defined by  

𝑃0  =  1, and 

𝑃𝑛(𝑥) =
1

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
(𝑥2 − 1)𝑛 (24) 

The 𝑛𝑡ℎ  polynomial, for which this is Rodrigues' formula, solves Legendre's differential 

equation with  𝑝 =  𝑛. 
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Fig. 3 Dimensionless fundamental frequency of the clamped FGM beam 

 

 
Fig. 4 Dimensionless fundamental frequency of the pinned-clamped FGM beam 

 

 
Fig. 5 Dimensionless fundamental frequency of the cantilever FGM beam 

 

 

3. Results and discussion 
 

The dimensionless fundamental angular frequency of the free vibration for simply supported 

FGM beam with various amounts of lumped mass against the position of the lumped mass is 

presented in Fig. (2). The parameter 𝑀 is the total mass of the FGM beam (𝑀 = 𝑚̅𝑒𝑞𝐿). The  
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Fig. 6 Dimensionless fundamental frequency of the clamped-shear hinge end FGM beam 

 

 
Fig. 7 First mode shape of the FGM beam 

 

 

dimensionless fundamental angular frequency of FGM beam for various amounts of lumped mass 

and various boundary conditions against the position of the lumped mass is presented in Fig. (3) to 

Fig. (6). 

Fig. (2) to Fig. (6) show that the shape of the fundamental frequency reduction curve is similar 

to the shape of the first mode of the FGM beam. For example, first mode shapes of the pinned-

clamped and clamped- shear hinge end FGM beams are presented in Fig. (7). 

 

 

4. Conclusions 
 

The effect of the position of the attached lumped mass on the frequency reduction of the FGM 

beam with different cross sections and different material distributions is investigated. The 

equivalent linear mass density and equivalent bending stiffness of the FGM beam are calculated. 

The results for different end conditions are presented. The dimensionless fundamental frequency 

decreases with increasing amount of connected lumped mass. It is shown that the decrease in 

natural frequency is a function of the amount and position of the lumped mass. The shape of the 

frequency reduction diagram is similar to the mode shape of the FGM beam. The position of the 

attached lumped mass can be used for vibration control of the FGM beam. In the present work, the 
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attached lumped mass position for frequency reduction is proposed for the first time. This new 

concept can be used as a new device for vibration control of cantilever beams. 
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