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Abstract.  Numerical modeling of reinforced concrete structures is a difficult engineering problem, primarily 
because of the material inhomogeneity. The behaviour of a concrete element with reinforcement can be analyzed 
using, for example, the Barcelona model, which according to the literature, is one of the most suitable models for this 
purpose. This article compares the experimental data obtained for an orthotropic concrete slab band system with 
those predicted numerically using Concrete Damage Plasticity model. Abaqus package was used to perform the 
calculations. 
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1. Introduction 
 

Modeling of concrete structures has been, and still is, a complex process. The response of this 

composite is certain to be inhomogeneous because the material constituents differ in their physical, 

chemical and mechanical properties. Analyzing non-linear behavior of a reinforced concrete 

element requires applying an elastic-plastic approach, like for other structural building materials 

(Kossakowski 2007, 2014a, 2014b). The material models used for describing the performance of 

geomaterials are those proposed by Drucker and Prager (D-P) (Pamin 1994, Majewski 2003) and 

Mohr and Coulomb (M-C) (Majewski 2003); they are models for elastic-rigid-plastic materials in 

which plastic flow occurs under constant stress equal to the yield stress. The Drucker and Prager 

model is used also for other materials (e.g. Stankiewicz and Pamin 2001), including concrete 

(Jiang and Wu 2012, Korol et al. 2017). For compression and tension regimes still other plasticity 

criteria are employed. The behavior of material under tension is described with the Rankine 

plasticiy criterion (Feenstra 1993). When concrete is in an inelastic state, stresses increase, leading 

to the material hardening, as well as decrease, causing its softening. The extended D-P model, 

known as the Barcelona model, for elastic–plastic–brittle failure, is the most suitable to describe 

the behavior of reinforced concrete elements (Lubliner et al. 1989 and Oller et al. 1990, Lee and 

Fenves 1998, Szarliński et al. 2002). This article describes the use of the Barcelona model to 

numerically analyze an orthotropic slab band system, comparing the results with the experimental 

data. 
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Fig. 1 Yield surface according to the ‘Barcelona model’ (plane stress) 

 

 

2. Barcelona model 
 

In the Barcelona model, the yield surface can be described by the following general equation: 

( ) ( ) ( ) ,0,,,,,, =−=  cij qpFqpf
 (1) 

where: F(p, q, , ) – a certain function of the stress invariants, p – the effective hydrostatic 

pressure based on first invariant J1 (p = – J1/3), q – the von Mises equivalent effective stress based 

on the second deviatoric stress invariant J2 (q = (3J2)0.5),  – stress invariant,  – the isotropic 

hardening variable, c() – yield stress. 

The experimental data show that, in the case of (2D) plane stress, the yield surface is irregular, 

i.e. ‘pseudo-elliptical’, in shape. The Barcelona model assumes that the boundary curve is a spline 

curve extrapolated to the principal stress space (Abaqus Theory Manual 2002, Lubliner et al. 1989 

and Oller et al. 1990). 

In the Barcelona model, the general form of the yield criterion, expressed by effective stresses 

and based on the two-mechanism hardening law, can be written as 
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where: , ,   – dimensionless coefficients, σ̂̅𝑚𝑎𝑥 – a maximum effective value of the 

principal stress, 〈 ∙ 〉 – predefined Macauley brackets: 
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 ¯ an overline denoting the effective value dependent on the degree of concrete degradation,  
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χ – the hardening variable for tension and compression (χt and χc, respectively).  

In the biaxial compression zone, in quadrant III of the coordinate system, the equation reduces 

to the classical Drucker–Prager yield criterion (Oller et al. 1990). 
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In quadrants II and IV, the envelopes of the elastic work zone are described by the curves using 

the following equations: 
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In quadrant I, the yield surface is described the most often by nonlinear function, but linear 

relation is also observed. In latter case, for 1 changing from 0 to to, the corresponding stress 

2 ≈ to, and vice versa, for 2 changing from 0 to to, the corresponding stress 1 ≈ to. For model 

shown in Figure 1, the yield surface is described by a circular sector with the stress circle radius 

equal to to. In the biaxial stress condition, the parameters ,  and  have the following form: 

( ) ( )

,0

,11
)(

)(
)(

.,
2

=

+−−=

=
−

−
=














tt

cc

cobo

cobo const

 

(6) 

where: σ̅𝑐(𝒳𝑐)  and σ̅𝑡(𝒳𝑡) – actual uniaxial compressive and tensile yield stresses, 

respectively, (for  the initial phase is considered). 

From the above equations, it is evident, that in the case of plane stress, the yield criterion for 

concrete (1) requires determining the parameters  and (0) on the basis of the uniaxial 

compressive and tensile yield stresses (co and to, respectively) and the biaxial compressive yield 

stress bo, which are assumed to be equal in both directions. 

 

 

3. Experiment 
 

The experimental investigations were performed originally by one of the Author (Bijak 

[married name Uzarska] 2008) and concerned tests of slabs made of reinforced concrete. 

The specimens tested were 1700 × 900 mm concrete slabs with a thickness of 60 mm. Two 

types of concrete slabs, differing in the mean concrete strength (fcm = 39.75 MPa and fcm = 22. 49 

MPa), were used. The reinforcing material was 34GS steel, with the reinforcement ratios being 

x = 0.67% and y = 0.28%, respectively. The reinforcement system is illustrated in Fig. 2. 

The slabs were tested under laboratory conditions at the Kielce University of Technology using 

a special facility for testing reinforced concrete elements (Bijak (Uzarska) 2008). The strain on the 

element was measured with point strain gages mounted in one or two rows on each side of the 

213



 

 

 

 

 

 

Paweł G. Kossakowski and Izabela Uzarska 

 
Fig. 2 Slab reinforcement system 

 

 

element (six gages per row, spaced 150 mm). The slab deflection was measured using Peltron 

inductive displacement sensors with a measuring range of 20 mm or 50 mm fixed at 16 points, as 

shown in Fig. 3. The load was applied using a hydraulic jack; the load was determined by 

measuring the oil pressure in the universal testing machine; additionally, a strain gage load cell 

with a range of 0-160 kN and an accuracy of 0.12 kN was mounted on the press head (Fig. 3). The 

elements were loaded at the centre by applying a concentrated force. Before the tests, all the 

inductive displacement sensors and strain gages were calibrated and tested. Calibration required 

plotting a voltage-force curve for each strain gage and a voltage-displacement curve for each 

inductive displacement sensor. The curves were input into the program analyzing the measurement 

data. 

The tests involved measuring the load and displacement with each increase in load F; the 

measurements were taken at 16 points (Fig. 3).  

Additional destructive tests were carried out for cubic specimens (150×150×150 mm) to 

determine the compressive strength of concrete. The yield strength of steel was also determined. 

  

4. Numerical procedure 
 

Abaqus version 6.7, special software for finite element analysis, was applied to perform the 

numerical calculations (Abaqus Theory Manual 2002). The problems were solved using Abaqus 

Explicit. The slab geometry and the boundary conditions used in the numerical models were the 

same as those selected for the tests (Fig. 4). 

The numerical analysis was conducted for an element under a gradually increasing load; it 

involved modeling the load-displacement curves obtained experimentally for the particular 

elements.  

y

x
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Fig. 3 Arrangement and spacing of the displacement sensors 

 

 
Fig. 4 Numerical model of the analyzed concrete element 

 

The numerical models were created using standard two-dimensional four-node shell finite 

elements S4R (Fig. 4) from the Abaqus library. A mesh with rectangular elements was selected 

mainly because it was essential to precisely determine the points corresponding to the location of 

sensors and supports. It was easy to divide the slab into zones, with the dividing lines representing 

the lines along which the sensors and supports were located. The task would have been difficult if 

a mesh with triangular or polygonal finite elements had been used. The simulations required 

iteratively optimizing the finite element mesh size in order to minimize the deviation of the 

numerical results, i.e. load-displacement curves, from the experimental data, while keeping the 
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calculation time reasonable. The calculations involved applying several different models differing 

in the mesh density. In the generated mesh (Fig. 4), the optimum length of the sides of the finite 

elements ranged from about 40 to 50 mm (mean values). Such a mesh was used in the final 

calculations presented in this paper. 

The modeling required applying a special cross-section in which the layers of the slab 

reinforcement (reinforcing mesh) were the same as those in the element tested. 

A built-in function was used to define the reinforcement in the cross-section of the shell-type 

element. The Abaqus procedure involved defining the layers of uniaxial reinforcement and adding 

the rebars to the cross-section, which, for shell elements, are treated as smeared layers with a 

constant thickness equal to the area of each reinforcing bar divided by the reinforcing bar spacing. 

The reinforcement was in the form of ø6 bars arranged orthogonally in two, i.e. upper and lower, 

layers. The numerical calculations provided a faithful representation of the reinforcement of the 

physically tested elements (Fig. 2). The cross-sectional area of the rebar was defined with respect 

to a local coordinate system. The rebar geometry was constant, defined by area per bar; for the ø6 

bar, A = 28.2735 mm2, and the bar spacing, s, was 90 and 275 mm, for the longitudinal and 

transversal directions, respectively. For the orthotropic slab system, the orientation angles were 0° 

and 90°. Since shell-type finite elements were used, the position of the rebar layers in the shell 

thickness was defined according to the real geometry (Fig. 2). 

The basic material parameters assumed for the concrete and the reinforcement steel were the 

same as those for isotropic materials, taking into account the quantities determined during the 

destructive tests. The model with perfect plasticity for the reinforcement steel was applied. 

The slab support was assumed to be in the form of point support, as shown in Fig. 4, to prevent 

displacements along the direction perpendicular to the slab surface (the z direction). The load 

imposed on the slab (force F) was distributed across the surface in contact with the actuator 

plunger, like during the experiment (Fig. 3). 

The concrete behavior was predicted by means of a special model of plastic material known as 

the Concrete Damage Plasticity model, currently very popular and still modified (Lee and Fenves 

1998, Jankowiak and Łodygowski 2005, Kmiecik and Kamiński 2011, Belletti et al. 2015, 

Wosatko et al. 2015, Genikomsou and Polak 2015 and 2017, Alfarah et al. 2017, Szczecina and 

Winnicki 2017, Wosatko et al. 2018, Goh and Hrynyk 2018).  

The plastic range for concrete was defined with the following parameters: Ψ = 15º, ɛ = 0.1,  

σ b0/σc0 = 1.16, Kc = 2/3 and m = 0 (Cińcio and Wawrzynek 2003). The compression range was 

determined on the basis of the stress-strain curve (Majewski 2003) using the following 

relationship: 
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(7) 

where: ec= – 0.0022       

The tensile strength of concrete was calculated from the ratio of the uniaxial tensile stress to the 

uniaxial compressive stress: mt = ft/fc. In his review article, Oluokun (1991) indicates that  

mt = 0.3296 fc
–0.3376

. 

In the case of tension (Szarliński 2002), the material softening function for the σ–ε curve was 

derived from: 
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Fig. 5 σ-ε relationship used in the numerical analysis of the concrete in the compression zone 

 

 
Fig. 6 σ-ε relationship used in the numerical analysis of the concrete in the tension zone 
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assuming that 

c1 = 3.0,  c2 = 6.93, 
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where: Gf is the fracture energy determined in accordance with the CEB-FIP Model Code of 

1990 (1993) 
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(a) slab P1 at fcm = 22.49 MPa (b) slab P2 at fcm = 39.75 MPa 

Fig. 7 Force (F) against displacement (u) obtained numerically and experimentally with sensor No. 6 
 

 

where: αF = 6 – coefficient dependent on the maximum aggregate grain size [3], fc – cylindrical 

compressive strength of concrete f15/30, assuming that fc = fcm/1.25. 

The reinforcement steel was analyzed by employing a model of elastic-plastic material 

response, defined with the following quantities: E = 205 GPa, ν = 0.3 and Re = 476.2 MPa. 

 

 

5. Results 
  

Figure 7 shows the force–displacement plots obtained numerically using the Concrete Damage 

Plasticity model which are compared with the experimental data recorded by sensor No. 6 for 

slabs (fcm = 22.49 MPa and fcm = 39.75 MPa) over a full range of loads. 

As can be seen, there is good agreement between the numerical and experimental results 

obtained for the slabs at fcm = 39.75 MPa (Fig 7b), while there is no such agreement for the slabs 

with lower mean concrete strength (Fig. 7a). In the latter case, the numerically calculated values of 

the force F for the displacement u ranging from 0 mm to about 8 mm were slightly higher than 

those determined experimentally. It should be noted, however, that the numerical and experimental 

curves generated for this displacement range are similar. When u = 8 mm, the numerically 

simulated force F remained stable whereas the experimentally determined force continued to rise. 

It was thus it was difficult to analyze and compare the strain distributions obtained experimentally 

and numerically. The representative contour plots for a concrete slab of higher strength denoted as 

P2 are shown and analyzed below. 

Figure 8 provides mapping results for strains ε11 and ε22 for a concrete slab at fcm = 39.75 MPa. 

Figure 9 shows the main plastic strains and the crack pattern determined experimentally for a 

slab with a mean concrete strength of 39.75 MPa. 
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(a) strain ε11 (b) strain ε22 

Fig. 8 Strain mapping for ε11 and ε22 for slab P2 at F = 15.69kN 

 

  
(a) main plastic strains (b) crack pattern 

Fig. 9 Damage results for slab P2 

 

 

The simulated distributions of the plastic strains ε11 and ε22 for slab P2 at F = 15.69 kN show 

that the strain concentrations are higher on the bottom surface and in the central part of the slab 

(Figs. 8a and b). The extreme values of the calculated plastic strains in this area are of a similar 

order of magnitude, and they are: ε11 = 7.972×10-4 and ε22 = 1.861×10-3. The ratio of these values is 

the same as the ratio ε11/ε22 predicted for the slab with the analyzed ratio of sides. These results 

including the simulated principal strain directions (Fig. 9a) well correspond with the actual cracks 

on the bottom surface of the slab (Fig. 9b). The numerically determined principal strain directions 

and the strain concentrations well correspond to the crack morphology observed after the 

destructive tests. 
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6. Conclusions 
 

This article has discussed results of a numerical analysis performed with a failure model for 

plastic-brittle material and compared them with the experimental data obtained for an orthotropic 

slab band system made of two types of concrete differing in the mean concrete strength. The 

findings were used to draw the following conclusions for analyzed elements:   

• the differences between the numerical and experimental data observed for the slab at  

fcm = 22.49 MPa indicate that the load-carrying capacity predicted numerically is about 

30% lower than that reported during the experiments, and the displacement, which ranges 

from 50% to 10%, is smaller than that obtained through tests, 

• there is good agreement between numerical and experimental results concerning 

displacement and load-carrying capacity for slabs at fcm = 39.75 MPa. 

From the results obtained for the analyzed elements, it is clear that the Barcelona model was 

suitable to model slab elements made of standard grade concrete. For lower grade concrete, 

however, modification of the model parameters may be necessary. It seems that, in such a case, the 

steel hardening effect should be taken into consideration and defined for the material properties of 

reinforcement in numerical simulations. This will allow us to increase the total load-carrying 

capacity of elements when steel reinforcement is yielding.  

Obviously, more complex analysis for elements differing in geometry and concrete grade is 

required to further explain the observed phenomena and modify the model parameters.  
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