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Abstract.  Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of 
applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for 
motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a 
constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple 
penalty function technique was used to deal with design constraints while three meta-heuristics including differential 
evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were 
employed to solve the problems. Comparative results and the effect of the constraint handling technique are 
illustrated and discussed. 
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1. Introduction 
 

A number of machines in daily life are the applications of a simple four-bar linkage (Acharyya 

and Mandal 2009, Samer et al. 2012, Tong et al. 2013, Yu et al. 2013, Sleesongsom and Bureerat 

2015, Ebrahim and Payvandy 2015, Sleesongsom and Bureerat 2017, Sleesongsom and Bureerat 

2018). Some applications for this mechanism is a crank-rocker, part of a train wheel, a window 

wiper, a door closing mechanism, and rock crushers etc. This is a reason why many researchers 

have studied on four-bar mechanism synthesis. The mechanism synthesis is categorized in two 

types as typical and dimensional syntheses. For the dimensional synthesis, it can be subdivided 

into three types, which are path generation, motion generation and function generation. In this 

research, we focus only on the path generation (Acharyya and Mandal 2009, Samer et al. 2012, 

Tong et al. 2013, Sleesongsom and Bureerat 2015, Ebrahim and Payvandy 2015, Sleesongsom and 

Bureerat 2017) and the motion generation (Samer et al. 2012, Peng 2010, Sleesongsom and 

Bureerat 2017). The path generation or path synthesis is a technique to find the dimensions of 

linkage that a point on a coupler link move along the desired path while the motion generation or 

motion synthesis has a set of desired points and desired angles as a goal (Acharyya and Mandal 

 

Corresponding author, Ph.D., E-mail: suwin.se@kmitl.ac.th 



 

 

 

 

 

 

Wisanu Phukaokaew, Suwin Sleesongsom, Natee Panagant and Sujin Bureerat 

2009, Peng 2010). It has been proposed to study the path generation of the four bar mechanism by 

using meta-heuristic optimizers and studying the comparative performance. 

Furthermore, the work by Ebrahim and Payvandy (2015) proposed the efficient constraint 

handling technique based on a penalty technique. Later the efficient technique to avoid the 

constraint related to a crank angle sequence was proposed by Sleesongsom and Bureerat (2015). 

This technique has been proved to enhance the performance of the path generation synthesis, thus, 

it is believed to be able to enhance the performance of the motion generation in this research. Very 

recent work by Sleesongsom and Bureerat (2018) focused on studying the new constraint handling 

technique, which is applied for the path generation problem. This technique is extended from their 

previous work. It is seen that the new technique outperforms the previous penalty technique. 

It has been found that the advantages of using meta-heuristics (Baluja 1994, Storn and Price 

1997, Acharyya and Mandal 2009, Zhangand Sanderson 2009, Rao and Patel 2012, Tong et al. 

2013, Yu et al. 2013, Mirjalili et al. 2014, Sleesongsom and Bureerat 2015, Ebrahim and Payvandy 

2015, Shaheen et al. 2015, Sleesongsom and Bureerat 2018) are robustness, simplicity to use and 

independence of function derivatives, however, they are infamous for the lack of a convergence 

speed and consistency. However, in the last decade, numerous meta-heuristics were developed, 

which mostly have been proven to outperform their predecessors in both convergence speed and 

consistency. As a result, we choose three of such meta-heuristics to study in this research including 

differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning 

based optimization (TLBO). 

The rest of this paper is organized as follows. Section 2 details the position analysis of a four-

bar linkage. Objective function, the constraint handling technique, and all of MHs are presented in 

Section 3. A design problem and its conditions as well as a numerical experiment are given in 

Section 4, while the design results are in Section 5. The conclusions and discussion of the study 

are summarized in Section 6. 
 

 

2. Position analysis of a four-bar mechanism 
 

A position analysis of a four-bar linkage is an important computation required for path 

synthesis. The kinematic diagram of a four-bar linkage is shown in Fig. 1. 
 

 

 
Fig. 1 Four-bar linkage in global coordinate system 
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Fig. 2 Four-bar linkage in local coordinates 

 

 
Fig. 3 Calculation of objective function value 

 

 

For motion generation, it is assigned to search for link lengths (r1, r2, r3, r4) and other 

parameters, which gives the minimum error between the desire paths (xd, yd) and the generated 

points (xp, yp) and the minimum error between the desire angles (𝜃3𝑑) and generated angles (𝜃3𝑝) 

of the coupler link. 

 

2.1 Position analysis 
 

From Fig. 1, the vector loop equation of the mechanism can be written as 

r1 + r2 +r3 + r4 = 0 (1) 

The coupler point coordinates in the global coordinate as shown in Fig. 1 can be expressed as 

xp = xO2+ r2cos(𝜃2+𝜃1) +L1cos(0+𝜃3+𝜃1) 

yp = yO2+ r2sin(𝜃2+𝜃1) +L1sin(0++𝜃3+𝜃1) 
(2) 

where xO2 and yO2 are the coordinates of the O2 pin joint in the global coordinates. And 0 can be 

obtained by considering the link BCP using the cosine law, which is expressed as 
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0= cos-1[
𝐿1

2  + 𝑟3
2 − 𝐿2

2

2𝐿1𝑟3
] (3) 

The values of angles 𝜃3, 𝜃4 and γ with the known link lengths r1, r2, r3 and r4 at any given 

crank angle (𝜃2) can be obtained by considering Figure 2 and the technique in (Myszka 2005). The 

computation can be shown as follows: 

Z2 = 𝑟1
2 + 𝑟2

2 – 2r1r2cos𝜃2 

Z2 = 𝑟3
2 + 𝑟4

2 – 2r3r4cosγ 

γ = cos-1[
𝑟3

2+𝑟4
2−𝑟1

2−𝑟2
2+2𝑟1𝑟2𝑐𝑜𝑠𝜃2

2𝑟3𝑟4
] 

γ = cos-1[
𝑟3

2 + 𝑟4
2 − 𝑧2

2𝑟3𝑟4
] 

(4) 

α= cos-1[
𝑧2− 𝑟3

2 + 𝑟4
2

2𝑧𝑟4
] (5) 

β = cos-1[
𝑧2+ 𝑟1

2− 𝑟2
2

2𝑧𝑟1
] (6) 

𝜃3= π– (α + β + γ) (7) 

𝜃4= π – (α + β) (8) 

These equations will be used for objective function evaluation of the proposed optimization 

problem. 
 

 

3. Optimization problem and constraint handling 
 

3.1 Optimization problem 
 

The objective function composes two parts where the first part of the objective function is the 

position error between a set of desired points Pd or coordinates (xd, yd) initiated by the designer and 

the generated point (xp, yp) from the given mechanism dimensions. The second part of objective 

function is the angular error between desire angles (𝜃3𝑑) and generated angles (𝜃3𝑝) from input 

design variables. The member of design variables includes r1, r2, r3, r4, L1, L2, and the coordinates 

of O2 (xO2, yO2) and the angle of frame 1 (𝜃1). In this research, only the problem type called 

synthesis without prescribed timing, whicha set of 𝜃2
𝑖
valuesare also set as design variables. The 

optimization problem without prescribed timing is then written as 

minf (x) = ∑ [𝑁
𝑖=1 ( xd,i-xp,i)2 + ( yd,i–yp,i)2 + (𝜃3𝑑,𝑖-𝜃3𝑝,𝑖)

2] (9) 

subject to 

min(r1, r2, r3, r4) = crank(r2) (10) 

2min(r1, r2, r3, r4) + 2 max(r1, r2, r3, r4) < (r1+ r2+ r3+ r4) (11) 
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N

2

2

2

1

2 ...    (12) 

xl ≤x ≤ xu. (13) 

where x = {r1, r2, r3, r4 , L1, L2, 0, xO2, yO2, 𝜃2
1, 𝜃2

2, … , 𝜃2
𝑁}T, N is the number of points on the 

prescribed or desired curve, and xl and xu are lower and upper bounds of design vector x, 

respectively. 

 

3.2 Constraint handling 
 

This research uses a penalty function technique for constraint handling. This technique is 

carried out by adding to the objective function valued a penalty function value if the solution is 

infeasible. There are two parts of penalty function values. The first part is assigned to control link 

lengths to obey the Grashof’s criterion as shown in equations (10) and (11). The second part of the 

penalty function is assigned to control the constraint (12) or to ensure the input crank can rotate 

with a complete revolution in either direction (clockwise or counter clockwise). The penalty 

function works with adding a very high value to modify the objective function when some of the 

constraints violate. 
 

3.3 Meta-heuristics 
 

The meta-heuristic algorithms used in this study are briefly detailed as: 

 

3.3.1 Differential evolution (DE) 
DE is one of the most popular and powerful MHs which is a population-based stochastic 

optimization method. It starts with an initial population, which is randomly generated when no 

preliminary knowledge about the solution space is available. The DE operators include mutation, 

crossover, and selection. These operators are used to maintain population diversity, as well as to 

avoid a premature convergence. The DE scheme used in this study can be classified as the standard 

DE/best/2/bin algorithm (Stornand Price 1997). 
 

3.3.2 Self-adaptive differential evolution (JADE) 
JADE is an optimizer with self-adaptive parameter settings of DE. It is regarded as one of the 

most powerful DEs. For example, the scaling factor (F) used in DE mutation and the crossover 

probability (CR) are crucial parameters for its performance and is also problem-dependent. As a 

consequence, the development of self-adaptive DE began, which to some extent can improve DE 

search performance. Adaptive schemes of JADE can update the control parameters based on their 

historical record of success (Zhang and Sanderson 2009). 
 

3.3.3 Teaching learning based optimization (TLBO) 
TLBO (Rao and Patel 2012) exploits the concept of teaching and learning behavior of a teacher 

and students in a classroom. Surely, all students will follow their teacher and they often learn from 

each other where the clever one will also teach another. With such an idea, TLBO is formulated in 

such a way that its reproduction process has two main operators namely teaching and learning 

phases. The algorithm is a population-based optimizer where a population of design solutions is 

improved iteratively until reaching the termination criterion. 
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Table 1 Response surface solutions 

x1=F 0.5 0.5 0.5 1 1 1 1.5 1.5 1.5 

x2=CR 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 

Mean 0.7487 0.7514 0.7467 21.6982 20.6272 5.0437 61.6918 50.0431 80.5539 

 

 

DE is chosen in this work because it is one of the most popular and most powerful meta-

heuristics used in a wide variety of engineering applications while JADE is its self-adaptive 

version. TLBO, on the other hand, was the top performer for path synthesis (Sleesongsom and 

Bureerat 2017), thus, it is another preferred optimizer. Only DE requires optimization parameters 

setting. We thus performed DE by using design of experiment (DOE) to construct a response 

surface of the parameters settings (F and CR). The optimum parameters are used as DE control 

parameters for solving the design problems. The three-level full factorial design was performed 

leading to 32training points. For DOE, the scaling factor is set as F {0.5, 1.0, 1.5}, while the 

crossover rate is assigned as CR  {0.7, 0.8, 0.9}. In this study, we use the weighted sum W1= 0.25 

and W2 = 0.75 to tradeoff the two design objectives. The response surface solution is shown in 

Table 1, while the optimum parameters are F = 0.5 and CR = 0.8472. These parameters, given in 

Table 2, are employed with DE for performance comparison. 

 

 

4. Numerical experiment 
 

Nine design problems are used to study the performance of the meta-heuristics in this research. 

They are coded in MATLAB. The Optimizers parameters are tabulated in Table 2. The design 

problems are detailed as follows: 

 

Case-1: Design variables are x 

x= [r1, r2, r3, r4, L1, L2, xO2, yO2,𝜃1, 𝜃2
1, 𝜃2

2,  𝜃2
3, 𝜃2

4, 𝜃2
5 , 𝜃2

6] 

Target points are (xd, yd) and 𝜃3𝑑 

(xd, yd) = [(20,20), (20,25), (20,30), (20,35), (20,40), (20,45)] 

𝜃3𝑑= [1.9937, 1.9220, 1.8434, 1.7599, 1.6709,1.5735] rad 

 

Limits of the variables:  

5 ≤ r1, r2, r3, r4≤ 60 

-60 ≤ L1, L2, xO2, yO2, ≤ 60 

0≤ 𝜃0, 𝜃2
1, … , 𝜃2

6≤ 2 

 

Case-2: Design variables are x 

x= [r1, r2, r3, r4, L1, L2, xO2, yO2,𝜃1, 𝜃2
1, 𝜃2

2, 𝜃2
3, 𝜃2

4, 𝜃2
5 , 𝜃2

6, 𝜃2
7, 𝜃2

8, 𝜃2
9, 𝜃2

10] 

 

Target points are (xd, yd) and 𝜃3𝑑 

(xd, yd) = [(20, 10), (17.66, 15.142), (11.736, 17.878), (5, 16.928), (0.60307, 12.736),  

(0.60307, 7.2638), (5, 3.0718), (11.736, 2.1215), (17.66, 4.8577), (20, 10)] 

𝜃3𝑑 = [0.4208, 0.5117, 0.7433, 0.9910, 1.1394, 1.1296, 0.9599, 0.7322, 0.5257, 0.4208] rad 
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Limits of the variables:  

5 ≤ r1, r2, r3, r4≤ 80 

-80 ≤ L1, L2xO2, yO2, ≤ 80 

0≤ 𝜃0, 𝜃2
1, … , 𝜃2

10≤ 2 
 

Case-3 : Design variables are x 

x= [r1, r2, r3, r4, L1, L2, xO2, yO2,𝜃1, 𝜃2
1, 𝜃2

2, 𝜃2
3, 𝜃2

4, 𝜃2
5 , 𝜃2

6,  

𝜃2
7, 𝜃2

8, 𝜃2
9, 𝜃2

10, 𝜃2
11, 𝜃2

12, 𝜃2
13, 𝜃2

14, 𝜃2
15, 𝜃2

16, 𝜃2
17, 𝜃2

18, 𝜃2
19, 𝜃2

20, 𝜃2
21] 

Target points are (xd, yd) and𝜃3𝑑 

(xd, yd) = [(0, 0), (0.9356, 0.4064), (1.5983, 0.8220), (2.1704, 1.3002), (2.6621, 1.7986), 

(2.9957, 2.2692), (3.2614, 2.7276), (3.4941, 3.1408), (3.6635, 3.5485), (3.7798, 3.9623), (3.7992, 

4.4734), (3.7170, 4.8783), (3.4675, 5.3624), (3.1242, 5.6980), (2.7158, 5.8800), (2.2517, 5.8780), 

(1.7997, 5.6882), (1.2732, 5.1741), (0.8336, 4.5628), (0.4003, 3.9064), (0.3, 3.38)] 

𝜃3𝑑 = [0, 0, 0, 0, 0, 0, 0.06984127, 0.13968254, 0.261904762, 0.436507937, 0.611111111, 

0.838095238 1.047619048, 1.30952381, 1.571428571, 1.658730159,  

1.746031746, 1.833333333, 1.746031746 1.658730159, 1.571428571] rad 
 

Limits of the variables:  

5 ≤ r1, r2, r3, r4≤ 80 

-80 ≤ L1, L2, xO2, yO2, ≤ 80 

0≤ 𝜃0, 𝜃2
1, … , 𝜃2

21≤ 2 
 

The objective function equation (9) can be separated into two parts as the position errors and 

the angle error. Since there are two objective functions with different units, it is interesting to study 

their effects on motion synthesis. The objective function is then rewritten in the weighted sum 

form as: 

f(x) = 𝑊1 ∑ (𝑥𝑑,𝑖 − 𝑥𝑝,𝑖)
2

+ (𝑦𝑑,𝑖 − 𝑦𝑝,𝑖)
2

+𝑁
𝑖=1 𝑊2 ∑ (𝜃3𝑑,𝑖 − 𝜃3𝑝,𝑖)

2𝑁
𝑖=1  (14) 

where W1 and W2 are weighting factors for position and angle errors respectively. 

In this work, with the three original design problems and three sets of weighting factors, the 

optimization test problems are: 

 

Case 1. 

Case-11: W1=0.5, W2=0.5. 

Case-12: W1=0.25, W2=0.75. 

Case-13: W1=0.75, W2=0.25. 

 

Case 2. 

Case-21: W1=0.5, W2=0.5. 

Case-22: W1=0.25, W2=0.75. 

Case-23: W1=0.75, W2=0.75 

 

Case 3. 

Case-31: W1=0.5, W2=0.5. 

Case-32: W1=0.25, W2=0.75. 

Case-33: W1=0.75, W2=0.25. 
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Table 2 Parameters of the meta-heuristics 

Parameters DE JADE TLBO 

Number of initial population 50 50 50 

Scaling factor 0.5 - - 

Crossover rate 0.8472 - - 

Number of optimization run 30 30 30 

Generation number 500 500 500 

 

 

5. Results and discussion 
 

Each meta-heuristic optimizer is used to solve the optimization problems for 30 runs where the 

best results are regarded as optimum solutions. The result of case-11 obtains from the three meta-

heuristics are shown in Table 3. The table shows the best design result (x), mean objective function 

value (mean), best objective function value (min), standard deviation (std), number of successful 

runs (Success), and Error (exact objective function). It should be noted that the successful run 

means an optimization runs that results in a feasible optimum solution. In this case, there are 6 

target points. It is found that TLBO gives the best error (error = 0.02), the second is DE (error = 

0.0437) and the worst is JADE (error = 0.2036), nevertheless, DE gives the worst number of 

successful runs (80%) while the other algorithms have 100% (JADE) and 93.34% (TLBO) 

successful runs. When taking into account searching consistency based on the mean objective 

values and successful runs, the most consistent method is TLBO while the second best is DE. 

For the case-12, the comparative results are reported in Table 3. It is found that DE (error = 

0.0063) gives the better result than the other algorithms. The second best is TLBO (error = 0.0597) 

and the worst is JADE (error = 0.1345). However, JADE gives result in100.00% successful runs, 

while DE and TLBO gives the successful runs of 83.3333% and 96.67%, respectively. DE gives 

the worst number of successful runs. The most consistent method is JADE based on mean and 

successful runs. 

In case-13, the results obtained by those algorithms are shown in Table 3. It is found that the 

DE algorithm gives the minimum error (error = 0.0137) while the second best is TLBO (error = 

0.0536) and the worst in this case is JADE (error = 0.319). For this case the percentages of 

successful runs performed by DE, JADE and TLBO are 56.6667%, 96.67% and 83.34 

%respectively. The most consistent method is TLBO based on mean and successful runs. 

Figs. 4 show the best four-bar mechanisms obtained from solving Case-11, Case-12, and Case-

13 respectively. The position errors for Case-11, Case-12, and Case-13 are 0.0150, 0.0060 and 

0.0096 respectively. On the other hand, the angular errors for Case-11, Case-12, and Case-13 are 

0.0053, 0.00029 and 0.0042respectively. It can be seen that they have different dimensions 

depending on the assigned weighting values. 

The results of case-21 obtained from the three optimizers are shown in Table4. In this case (all 

of case-2) there are 10 target points. It is found that DE gives the best result (error = 0.7484) but 

with 33.3333 % successful runs. The second best is TLBO (error = 0.7833) with 36.67% 

successful runs while the worst is JADE (error = 1.905) with 10% successful runs. The most 

consistent method is DE based on mean and successful runs. 

For Case-22, the results are shown in Table 4. It is found that DE (error = 0.7396) gives the best 

result (only minimum error) than the other algorithms. The second is TLBO (error = 0.7538) and 
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Table 3 Comparative results for Case-11-13 

Parameter 
Case-11 Case-12 Case-13 

DE JADE TLBO DE JADE TLBO DE JADE TLBO 

r1 60 56.3425 14.1465 45.1775 26.1585 9.521 48.6865 31.532 9.961 

r2 42.4440 17.738 9.4605 31.4165 6.8755 5 32.0710 6.43 5.011 

r3 46.3655 32.9895 58.0585 37.0485 35.998 56.4305 41.0580 37.5875 57.569 

r4 56.0785 55.7815 60 44.4680 45.051 57.9705 49.7920 50.5895 59.2355 

L1 -17.6760 54.372 -50.76 44.0400 39.624 -39.408 59.9880 50.4 -41.94 

L2 57.9480 -59.952 -54.768 -35.8560 -45.24 -60 -36.7800 -44.568 -57.264 

xO2 -7.3920 56.964 -21.228 59.0880 -12.816 54.396 -24.9600 -23.652 56.904 

yO2 57.0960 16.692 49.056 9.5880 39.6 33.648 59.0640 47.76 31.692 

𝜃0 5.3325 6.2643 5.5707 0.5806 3.1661 2.7533 3.9113 3.3056 2.5818 

𝜃2
1 0.4105 0.1579 1.6103 3.5994 0.8841 5.0202 2.9679 1.1051 4.9255 

𝜃2
2 0.5052 0.2526 1.9891 3.4415 0.6315 4.4835 3.1258 0.7893 4.3888 

𝜃2
3 0.5999 0.3473 2.368 3.2837 0.4105 3.9783 3.2837 0.5368 3.8836 

𝜃2
4 0.6946 0.4420 2.7469 3.1258 0.1894 3.4415 3.4415 0.3157 3.3784 

𝜃2
5 0.7893 0.5368 3.1574 2.9679 6.2516 2.8732 3.5994 0.0631 2.8416 

𝜃2
6 0.8841 0.6315 3.5678 2.8101 5.9674 2.2733 3.7573 6.0937 2.3049 

mean 0.1664 0.4174 0.2045 0.1605 0.1950 0.3639 0.18724 0.6185 0.3369 

min 0.0214 0.1008 0.0092 0.0015 0.0799 0.0348 0.0080 0.1760 0.0172 

max 1.1145 1.0028 1.0121 1.2990 0.4148 1.84219 1.5102 1.1902 1.8798 

Std 0.2755 0.2207 0.2408 0.2945 0.0724 0.4475 0.3579 0.2577 0.4740 

Success 24 30 28 25 30 29 17 29 25 

Success(%) 80 100 93.34 83.3333 100 96.6667 56.6667 96.67 83.34 

Exact Error 0.0437 0.2036 0.02 0.0063 0.1345 0.0597 0.0138 0.319 0.0536 

*Success = no. of successful runs; error = the objective function (minimum error) 

 

 

the worst optimizer is JADE (error = 1.8558). TLBO has 46.67% of number of successful runs, 

which is highest value. The second, DE has40% of number of successful runs while the rest have 

23.34% successful runs. The most consistent method is TLBO according to the number of 

successful runs and the mean objective function values. 

In case-23, the results obtained from using those algorithms are shown in Table 4. It is found 

that DE gives the minimum objective function (error = 0.7505) while the second best and the 

worst are TLBO (error = 0.7546) and JADE (error = 2.7638) respectively. The table shows the 

number of successful runs for DE as 36.6667 % and for TLBO and JADE are 20% and 6.67% 

respectively. DE is the best method for both convergence and consistency in this case. 

Figs. 5 shows the best four-bar mechanisms obtained from solving Case-21, Case-22, and Case-

23 respectively. The position errors for Case-21, Case-22, and Case-23 are 0.0275, 0.0169, and 

0.0292 respectively. On the other hand, the angular errors for Case-21, Case-22, and Case-23 are 

0.7210, 0.7227, and 0.7213respectively. It can be seen that they have different dimensions 

depending on the assigned weighting values. 

The comparative results of case-31 are reported in Table 5 where the number of target points is 
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Table 4 Comparative results for Case-21-23 

Parameter 
Case-21 Case-22 Case-23 

DE JADE TLBO DE JADE TLBO DE JADE TLBO 

r1 73.1825 36.0125 79.955 54.2900 63.1625 73.6475 80 55.79 77.63 

r2 10.0100 9.755 9.0125 9.2375 9.44 9.08 8.8400 10.1375 9.3875 

r3 43.2800 42.2225 64.5275 35.6150 55.835 47.1125 55.4675 46.37 52.175 

r4 44.5100 29.4725 52.7825 32.1950 42.59 45.4625 49.8875 43.295 49.07 

L1 7.9200 -6.304 -14.24 7.1200 12.544 9.616 11.9680 9.776 10.576 

L2 -35.9040 -38.704 -66.112 36.5760 -46.4 49.488 59.8400 -37.056 -50.384 

xO2 17.8880 15.584 0.128 4.6240 20.816 16.816 17.4400 19.632 1.328 

yO2 9.4400 8.064 20.128 5.6960 16.064 16.592 19.2320 10.16 4.144 

𝜃0 2.1627 2.9933 0.0666 4.7840 2.3166 1.5658 1.5350 2.0351 4.9204 

𝜃2
1 4.1046 3.2521 6.0937 1.5787 4.073 4.8308 4.8624 4.3572 1.4524 

𝜃2
2 4.8308 3.8836 0.5368 2.2733 4.7992 5.5254 5.5570 5.0202 2.147 

𝜃2
3 5.5254 4.6098 1.2314 2.9995 5.4938 6.22 6.2516 5.6517 2.8416 

𝜃2
4 6.2200 5.3044 1.926 3.7257 6.1569 0.6315 0.6630 0.0631 3.5678 

𝜃2
5 0.6315 6.0622 2.6206 4.4203 0.5368 1.3261 1.3577 0.8841 4.2625 

𝜃2
6 1.3261 0.5052 3.3152 5.1150 1.2314 2.0207 2.0523 1.5471 4.9571 

𝜃2
7 1.9891 1.1682 4.0099 5.8096 1.9576 0.4276 2.7469 0.6357 5.6517 

𝜃2
8 2.6838 1.8629 4.7045 0.1894 2.6522 0.4976 3.4731 0.6738 0.0631 

𝜃2
9 3.3784 2.6206 5.3991 0.8841 3.3784 0.6349 4.1677 0.8026 0.7578 

𝜃2
10 4.1046 3.2521 6.0937 1.5787 4.073 0.7699 4.8624 0.9581 1.4524 

mean 0.6596 1.2640 0.8792 0.7455 1.2892 0.9790 0.6615 1.7659 0.8290 

min 0.3711 0.9395 0.3900 0.5461 0.8190 0.5490 0.2005 1.5339 0.2032 

max 1.7411 1.6399 1.8387 1.3966 1.7272 1.5955 1.9825 1.9979 1.7529 

Std 0.50355 0.3531 0.6118 0.3481 0.3365 0.3780 0.6005 0.3281 0.6262 

Success 10 3 11 12 7 14 11 2 6 

Success(%) 33.3333 10 36.67 40 23.34 46.67 36.6667 6.67 20 

Exact Error 0.7485 1.905 0.7833 0.7396 1.8558 0.7538 0.7506 2.7638 0.7546 

 

 

21. It is found that DE gives the best result (error = 12.9063), the second is TLBO (error = 

13.3751) and the worst is JADE (error = 17.5293). For this case the percentages of successful runs 

performed by DE, JADE and TLBO are 26.6667%, 20% and 60 % respectively. TLBO is the best 

method for both convergence and consistency in this case. 

For case-32, the results obtained from the three optimizers are shown in Table 5. It is found that 

the best solution is from using DE (error = 13.5807), the second is TLBO (error =14.6835) and the 

worst is JADE (error = 19.3363). DE, JADE and TLBO are 40%, 16.67% and 60%of successful 

runs respectively. TLBO is the best method for both convergence and consistency in this case. 

For Case-33, the results obtained from using the various MHs are shown in Table 5. From the 

results, it is found that DE gives the best result (error = 13.3806) but it is the second worst when 

considering the number of successful runs (23.3333%). The second best is TLBO (error = 14.299) 

which gives the best result for the number of successful runs while the worst error (error 
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Table 5 Comparative results for Case-31-33 

Parameter 
Case-31 Case-32 Case-33 

DE JADE TLBO DE JADE TLBO DE JADE TLBO 

r1 79.9250 32.3675 22.82 51.2675 79.3325 52.775 79.9025 51.5825 41.8625 

r2 5 6.2075 5.5475 5 6.305 5 7.6775 9.665 5 

r3 26.1575 53.8775 44.4875 80 47.045 79.4675 30.5300 26.7725 50.645 

r4 58.7750 48.74 35.21 58.4750 49.37 58.76 57.0500 36.41 35.12 

L1 13.1680 -28.48 -25.696 -65.5200 36 -68.144 18.8320 21.472 -37.904 

L2 -28.3680 45.536 -37.584 -78.2240 24.816 -80 29.2000 17.44 -51.936 

xO2 4.1440 -11.28 -3.936 53.3920 -4.784 -37.936 5.1840 7.488 -28.544 

yO2 -7.3760 -18.864 -24.56 46.0640 37.872 -54.432 -10.1760 -12.896 -16.448 

𝜃0 6.0400 0.9494 1.4809 4.1306 3.7435 1.2598 0.0038 0.4769 1.0725 

𝜃2
1 4.9887 3.0942 4.6098 5.8412 6.2832 4.1046 4.7992 3.7573 2.7153 

𝜃2
2 5.3991 3.5994 4.6729 5.3991 6.22 4.1993 5.1465 3.6626 3.2837 

𝜃2
3 5.6201 3.9152 1.2945 5.1781 6.1569 1.1998 5.3675 3.5994 3.5363 

𝜃2
4 5.8096 4.073 1.1682 4.9887 2.4628 1.0735 5.4938 5.5886 3.7257 

𝜃2
5 5.9674 4.2309 1.0419 4.8624 2.5259 0.9472 5.6201 5.6517 3.852 

𝜃2
6 6.0622 4.3572 0.9472 4.7361 2.5891 0.8525 5.7149 5.6833 3.9783 

𝜃2
7 6.1569 4.4519 0.8525 4.6413 2.6838 0.7578 5.7780 5.7464 4.073 

𝜃2
8 6.2516 4.5151 0.7578 4.5466 2.7153 0.663 5.8412 5.778 4.1677 

𝜃2
9 0.0631 4.6098 0.663 4.4519 2.7785 0.5683 5.9043 5.8412 4.2309 

𝜃2
10 0.1263 4.6729 0.5683 4.3888 2.8416 0.4736 5.9674 5.8727 4.294 

𝜃2
11 0.2210 4.7676 0.442 4.2940 2.9364 0.3789 6.0306 5.9043 4.3888 

𝜃2
12 0.2842 4.7992 0.3473 4.2309 2.9995 0.2842 6.0622 5.9359 4.4519 

𝜃2
13 0.3473 4.8624 0.1579 4.1677 3.0942 0.1263 6.1253 5.999 4.5151 

𝜃2
14 3.2205 4.9255 6.2516 1.3892 3.1574 0 3.3784 6.0306 4.5466 

𝜃2
15 3.2521 1.5787 6.0937 1.3577 3.2205 6.0937 3.4100 6.0306 1.0104 

𝜃2
16 3.3152 1.6418 5.9359 1.2945 3.2205 5.557 3.4415 6.0306 1.0419 

𝜃2
17 3.3784 1.705 5.8096 1.2314 5.3675 5.3675 3.5047 2.9679 1.1367 

𝜃2
18 3.5047 1.7997 5.6201 1.0735 5.4623 5.1781 3.5994 3.0311 1.263 

𝜃2
19 3.6310 1.926 5.4623 0.9472 5.5886 4.9887 3.6941 3.0942 1.3892 

𝜃2
20 3.7573 2.0839 5.3044 0.7893 5.6833 4.8308 3.8204 3.1574 1.5471 

𝜃2
21 3.8520 2.1786 5.2097 0.6946 5.778 4.7361 3.8836 3.2205 1.6418 

mean 7.5227 10.9663 9.0400 9.5873 11.4091 10.5664 6.0078 10.5556 7.5320 

min 6.44931 8.7754 6.6875 9.2129 10.7913 9.4850 3.9664 8.7715 4.7757 

max 8.8288 11.8902 11.8350 10.1972 11.9699 11.5793 7.7882 11.6537 10.6825 

Std 0.7161 1.1535 1.3830 0.2772 0.4359 0.5658 1.5665 1.1430 2.0439 

Success 8 6 18 12 5 18 7 5 12 

Success(%) 26.6667 20 60 40 16.67 60 23.3333 16.67 40 

Exact Error 12.9064 17.5293 13.3751 13.5802 19.3363 14.6835 13.3805 20.6548 14.299 
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(a) (b) 

 
(c) 

Fig. 4 Best solution (a) Case-11 (TLBO) (b) Case-12 (DE) (c) Case-13 (DE) 
 

 

=20.6548) and worst successful runs (16.67%) are from JADE respectively. TLBO is the best 

method for both convergence and consistency in this case. 

Figs. 6 show the best four-bar mechanisms obtained from solving Case-31, Case-32, and Case-

33 respectively. The position errors for Case-31, Case-32, and Case-33 are 0.9746, 1.9434, and 

1.2329respectively. On the other hand, the angular errors for Case-31, Case-32, and Case-33 are 

11.9319, 11.6368, and 12.1477 respectively. It can be seen that they have different dimensions 

depending on the assigned weighting values. 
 

 

6. Conclusions 
 

The comparative results reveal that the employed meta-heuristics can be used to solve the 

motion synthesis problems for a four-bar linkage successfully. Overall, DE/best/2/bin gives the 

best solutions for most of the design cases with TLBO being the second best. Nevertheless, when 

considering the search consistency, TLBO is an algorithm responding best to this criterion. JADE 

is not efficient for this type of optimization. The weighting factors influent the results, which 

implies that it is up to a designer to pre-specify whether to weight to position or angular errors. 

This study reports the baseline results for other researchers to follow and develop more powerful 

algorithms to solve the test problems. It is also more interesting to use multiobjective evolutionary 

algorithms to deal with minimizing position and angular errors. With the use of such optimisers, a 

designer does not need to predefine weighting factors and a Pareto front can be achieved within 

one optimization run. 

-50 -40 -30 -20 -10 0 10 20 30 40 50

20

30

40

50

60

70

80

90

 O
2

 O
4

x(mm)

y
(m

m
)

distance error = 0.020295

 

 

target points

P positions

coupler curve

0 20 40 60 80 100 120

-10

0

10

20

30

40

50

60

70

80

 O
2

 O
4

x(mm)

y
(m

m
)

distance error = 0.0062759

 

 

target points

P positions

coupler curve

-80 -60 -40 -20 0 20 40

-20

0

20

40

60

80

 O
2

 O
4

x(mm)

y
(m

m
)

distance error = 0.013805

 

 

target points

P positions

coupler curve

208



 

 

 

 

 

 

Synthesis of four-bar linkage motion generation using optimization algorithms 

  
(a) (b) 
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Fig. 5 Best solution for (a) Case-21 (DE) (b) Case-22 (DE) (c) Case-23 (DE) 
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Fig. 6 Best solution for (a) Case-31 (DE) (b) Case-32 (DE) (c) Case-33 (DE) 
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