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Abstract.  This article presents a semi-analytical solution for an exponentially graded piezoelectric hollow 

sphere. The sphere interacts with electric displacement, elastic deformations, electric potentials, 

magneto-thermo-elasticity, and hygrothermal influences. The hollow sphere may be standing under both 

mechanical and electric potentials. Electro-magneto-elastic behavior of magnetic field vector can be 

described in the hollow sphere. All material, thermal and magnetic properties of hollow sphere are supposed 

to be graded in radial direction. A semi-analytical technique is improved to deduce all fields in which 

different boundary conditions for radial stress and electric potential are presented. Numerical examples for 

radial displacement, radial and hoop stresses, and electric potential are investigated. The influence of many 

parameters is studied. It is seen that the gradation of all material, thermal and magnetic properties has 

particular effectiveness in many applications of modern technology. 
 

Keywords:  exponentially graded material; semi-analytical technique; perturbation of magnetic field; 

hygrothermal effect; piezoelectric materials 

 
 
1. Introduction 
 

Different graded materials are inhomogeneous composite materials that varied smoothly and 

continuously as functions of position in thickness direction of structures. These materials are 

mainly organized to operate in hygrothermal environment. Recently, the interest to manufacture 

components with improved composition materials has been increased through their functionally 

gradation for an optimized design. The main application of functionally (FGMs) or exponentially 

(EGMs) graded materials increases in high temperature aerospace circumference. Ding et al. 

(2003) presented the spherically symmetric thermoelastic problem of a FG pyroelectric hollow 

sphere. Eslami et al. (2005) presented a general solution for the 1D steady-state thermal and 

mechanical stresses in FGM hollow thick spheres. Poultangari et al. (2008) obtained the solution 

for the 2D steady state thermal and mechanical stresses in a FGM hollow thick sphere. Kar and 

Kanoria (2009) presented a generalized thermoelastic FG orthotropic hollow sphere subjected to 
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thermal shock with three-phase-lag effect. 

An extension to the FGMs is the functionally graded piezoelectric materials (FGPMs) (Guo et 

al. 2009, Ghobanpour Arani et al. 2012, Akbarzadeh and Chen, 2013, Jabbari et al. 2013). Dai and 

Fu (2005) presented an analytical method to obtain electromagnetoelastic transient behavior of 

piezoelectric spheres in constant magnetic field. Dai et al. (2007) studied analytical solution for 

piezoelectric response in FGP cylinder and sphere under mechanical loadings and electric 

excitation. Ootao and Tanigawa (2007) treated theoretically the transient thermo-piezo-electric 

response of FG sphere due to uniform heat supply. Chiroiu and Munteanu (2007) analyzed the free 

vibrations of a piezoceramic hollow sphere with radial polarization by using the cnoidal method 

and a genetic algorithm. Dai et al. (2008) discussed analytical investigations on 

electro-magneto-elastic response of FGP cylinder and sphere rested in constant magnetic field and 

undergo mechanical and electric loadings. Wang and Xu (2010) carried out the elastic analysis for 

FG, radially polarized piezoelectric spherical structure subjected to mechanical and electrical loads 

based on the 3D linear piezoelectric theory. Allam and Tantawy (2011) discussed analytically the 

interaction of electric potential and displacement, elastic deformation and thermoelasticity in FG 

hollow structures. Dai et al. (2012) investigated an analytical solution for time-dependent 

behaviors of a FGPM hollow sphere subjected to the coupling of multi-fields. Arefi and Nahas 

(2014) developed the nonlinear thermos-electro-elastic analysis of a thick spherical shell for the 

FGPMs. Allam et al. (2015) presented semi-analytical technique for FGP hollow spheres.  

Many investigations concerning global responses of EG/FG elastic, piezoelectric, or 

viscoelastic structures in thermal or hygrothermal environments are made in the literature (Reddy 

and Chin, 1998, Reddy, 2000, Reddy and Cheng, 2001, Zenkour, 2005a, b, 2006, 2007, Zenkour et 

al. 2008, Ghorbanpour Arania et al. 2009, 2011, Loghman et al. 2011, Allam et al. 2017). Wang 

and Ding (2006) solved the transient responses of a magneto-electro-elastic hollow sphere 

subjected to spherically symmetric dynamic loads. Dai and Rao (2011) presented an analytical 

method to investigate electro-magneto-thermo-elastic responses of a FGPM hollow sphere placed 

in a uniform magnetic field, subjected to electric, thermal and mechanical loads. Dai et al. (2011) 

investigated the exact solution for the 1D steady-state magneto-thermo-elastic stresses and 

perturbation of magnetic field vector in FGM hollow spheres. Ootao and Ishihara (2012) 

investigated the theoretical analysis of a multilayered magneto-electro-thermo-elastic hollow 

sphere under unsteady and uniform surface heating. Chen et al. (2015) presented an analytical 

solution on the general static deformation of a spherically anisotropic and multilayered 

magneto-electro-elastic hollow sphere. 

In this article, a semi-analytical technique for an EGP hollow sphere is presented. The hollow 

sphere interacts with electric potential, electric displacement, elastic deformations, 

magneto-thermo-elasticity, and hygrothermal influences. Different examples are investigated for 

EGP sphere is subjected to various types of pressures. The effect of many parameters and various 

boundary conditions on the field study of EGP hollow sphere are discussed. 
 

 

2. Basic equations 
 

Consider a hollow sphere, which has a perfect conductivity and placed in a constant magnetic 

field. Here, the spherical coordinates system (𝑟, 𝜃, 𝜑) is used for any representative point and the 

EGP sphere is based upon rapid change in temperature 𝑇(𝑟), moisture concentration 𝐶(𝑟) and 

mechanical loads. In what follows the index 𝑖 will represent 𝑟 and 𝜃 while the index 𝑗 will 

represent 𝑟, 𝜃, and 𝜑. 
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Here, the property variation 𝑃(𝑟) of all material properties in EGP sphere across the radial 

direction is supposed as 

𝑃(𝑟) = 𝑝𝑎e
𝑘(𝑟−𝑎)

𝑏 ,     𝑘 =
𝑏

𝑏 − 𝑎
ln(

𝑝𝑏

𝑝𝑎
), (1) 

in which 𝑎 and 𝑏 denote inner and outer radii of hollow sphere, respectively, 𝑝𝑎 represents the 

corresponding material property of the inner surface while 𝑝𝑏  represents the corresponding 

material property of outer surface. We will present the basic equations of the EGP sphere for the 

axisymmetric plane strain assumption in the following relations: 

The constitutive relations are (Sinha 1962, Raja et al. 2004, Dai and Wang 2005): 

{
𝜎𝑟
𝜎𝜃
} = [

𝑐𝑟𝑟 2𝑐𝑟𝜃 𝑒𝑟𝑟
𝑐𝑟𝜃 𝑐𝜃𝜑 + 𝑐𝜃𝜃 𝑒𝑟𝜃

]

{
 
 

 
 
d𝑢

d𝑟
𝑢

𝑟
d𝜓

d𝑟}
 
 

 
 

− {
𝜆𝑟
𝜆𝜃
} 𝑇(𝑟) − {

𝜂𝑟
𝜂𝜃
} 𝐶(𝑟), (2) 

and 

𝐷𝑟 = 𝑒𝑟𝑟
d𝑢

d𝑟
+ 2𝑒𝑟𝜃

𝑢

𝑟
− 𝜀𝑟𝑟

d𝜓

d𝑟
+ 𝑝𝑟𝑟𝑇(𝑟), (3) 

where 𝜎𝑖(𝑟) denote stress components, 𝐷𝑟(𝑟) denotes electric displacement, 𝑢(𝑟) represents 

radial displacement, and 𝜓(𝑟) represents the electric potential. Also, 𝑐𝑖𝑗  denote the elastic 

coefficients, 𝑒𝑟𝑖 denote the piezoelectric parameters, 𝜀𝑟𝑟 represent the dielectric parameter and 

prr  represents the pyroelectric coefficient. In addition, 𝜂𝑖  represent the moisture expansion 

coefficients while 𝜆𝑖 denote stress-temperature moduli which expressed in the forms 

{
𝜆𝑟
𝜆𝜃
} = [

𝑐𝑟𝑟 2𝑐𝑟𝜃
𝑐𝑟𝜃 𝑐𝜃𝜑 + 𝑐𝜃𝜃

] {
𝛼𝑟
𝛼𝜃
}, (4) 

in which 𝛼𝑖 are the thermal expansion coefficients.  

It is assumed here that magnetic permeability 𝜇(𝑟) of EGP sphere is similar to magnetic 

permeability of its medium (Ezzat, 1997). It is also assumed that the medium is non-ferromagnetic 

and non-ferroelectric with neglecting Thompson effect. So, the simple forms of Maxwell's 

equations of electrodynamics may be expressed as (Kraus 1984, Dai and Wang 2004) 

𝐽 = 𝛻 × ℎ⃗⃗,     𝛻 × 𝑒 = −𝜇
𝜕ℎ⃗⃗

𝜕𝑡
,

𝛻 ∙ ℎ⃗⃗ = 0,     𝑒 = −𝜇 (
𝜕𝑢⃗⃗

𝜕𝑡
× 𝐻⃗⃗⃗) ,

ℎ⃗⃗ = 𝛻 × (𝑢⃗⃗ × 𝐻⃗⃗⃗). }
 
 

 
 

 (5) 

The vector of initial magnetic 𝐻⃗⃗⃗ ≡ (0,0, 𝐻𝜑) and displacement field 𝑢⃗⃗ ≡ (𝑢, 0,0) as well as 

ℎ⃗⃗ ≡ (0,0, ℎ𝜑) may be applied in Eq. (5), to get 
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𝑒 ≡ −𝜇(𝑟) (0, 𝐻𝜑
𝜕𝑢

𝜕𝑡
, 0) ,

𝐽 ≡ (0,−
𝜕ℎ𝜑

𝜕𝑟
, 0) ,

ℎ𝜑 = −𝐻𝜑 (
𝜕𝑢

𝜕𝑟
+
2𝑢

𝑟
) . }

  
 

  
 

 (6) 

Generally, this study assumes that all properties, 𝑐𝑖𝑗, 𝑒𝑟𝑗, 𝜀𝑟𝑟, 𝜇, 𝜂𝑖, 𝛼𝑖 and 𝑝𝑟𝑟, change 

continuously along the radial direction of EGP sphere according to the exponentially graded 

relation presented in Eq. (1). 

 

 

3. Governing equations 
 

3.1 Temperature and moisture equations 
 

The temperature distribution along the radial direction of EGP hollow sphere is given by 

thermal conduction equation (Allam et al. 2008): 

𝜅𝛻2𝑇(𝑟) + 𝑞(𝑟) = 0, (7) 

where 𝛻2 =
d2

d𝑟2
+
1

𝑟

d

d𝑟
, 𝜅  represents the thermal conductivity and 𝑞(𝑟)  denotes the heat 

generation function. 

The equation of transient moisture diffusion will be expressed by using Fick’s law as 

𝛻2𝐶(𝑟) = 0. (8) 

 

3.2 Equations of charge and equilibrium 
 

The equilibrium equation of EGP hollow sphere, with neglecting body forces, may be written 

as (Dai et al. 2006): 

d𝜎𝑟
d𝑟

+
2(𝜎𝑟 − 𝜎𝜃)

𝑟
+ 𝑓𝜑 = 0. (9) 

where 𝑓𝜑 represents Lorentz force. It is expressed as (Dai et al. 2006): 

𝑓𝜑 = 𝐻𝜑
2
d

d𝑟
(𝜇
d𝑢

d𝑟
+ 2𝜇

𝑢

𝑟
). (10) 

Once again, if we neglect the free charge density, we can get the charge equation of 

electrostatics as (Heyliger, 1997): 

d𝐷𝑟
d𝑟

+
2𝐷𝑟
𝑟
= 0. (11) 
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Fig. 1 Temperature distribution in EGP hollow 

sphere 
Fig. 2 Moisture distribution in EGP hollow sphere 

 

 
Fig. 3 Dividing radial domain into some finite sub-domain 

 
 
4. Elastic solutions for EGP hollow sphere 

 

The purpose of this section is to solve the different equations of temperature, moisture and 

equilibrium. All integration constants will be determined by applied boundary conditions of 

pressure and electric potential.  

The inner surface of EGP hollow sphere is subjected to reference initial heat 𝑇0 and its outer 

surface is insulated. The heat conditions for temperature are 

𝑇(𝑟)|𝑟=𝑎 = 𝑇0 ,     
d𝑇(𝑟)

d𝑟
|
𝑟=𝑏

= 0. (12) 

The heat generation function is prescribed as 

𝑞(𝑟) = −𝑄 (
𝑟 − 𝑎

𝑎
) (
𝑟 − 𝑏

𝑏
) ,    𝑎 ≤ 𝑟 ≤ 𝑏, (13) 

where 𝑄 denotes the uniform rate of internal energy generation. Solving Eq. (7) gives 

307



 

 

 

 

 

 

M.N.M. Allam, R. Tantawy and A.M. Zenkour 

𝑇(𝑟) =
𝑄𝑟2

144𝜅𝑎𝑏
[9(𝑟2 + 4𝑎𝑏) − 16𝑟(𝑎 + 𝑏)] + 𝑐1 ln(𝑟) + 𝑐2, (14) 

where 𝑐1 and 𝑐2 are integration constants which derived with the help of Eq. (12). That is 

𝑐1 =
𝑄𝑏2

12𝜅𝑎
(𝑏 − 2𝑎),

𝑐2 =
𝑄

144𝜅𝑎𝑏
[𝑎3(7𝑎 − 20𝑏) − 12𝑏3 ln(𝑎) (𝑏 − 2𝑎)] + 𝑇0.

} (15) 

Figure 1 illustrates the behavior of non-dimensional temperature 𝑇̅ = 𝑇/𝑇0  along radial 

direction with 𝑟̅ = 𝑟/𝑏. The two radii of EGP hollow sphere are fixed as 𝑎 = 0.2 m and 𝑏 =
1 m. Also, 𝑄 and 𝜅 are presented as 

𝑄 = 12 (W/m3),     𝜅 = 0.35 (W/K m). (16) 

The moisture concentration at boundaries are represented as 

𝐶(𝑟)|𝑟=𝑎 = 0,           𝐶(𝑟)|𝑟=𝑏 = 𝐶0, (17) 

where 𝐶0 denotes reference initial moisture concentration. Now, solving Eq. (8) gives 

𝐶(𝑟) = 𝑐3 𝑙𝑛(𝑟) + 𝑐4, (18) 

in which 𝑐3 and 𝑐4 are additional integration constants. They are, due to Eqs. (17), given by 

𝑐3 =
𝐶0

ln(𝑏) − ln(𝑎)
,          𝑐4 = −

𝐶0 ln(𝑎)

ln(𝑏) − ln(𝑎)
. (19) 

Figure 2 plots the distribution of non-dimensional moisture concentration 𝐶̅ = 𝐶/𝐶0 through 

the radial direction with 𝑟̅ = 𝑟/𝑏. 

Now, solving the charge equation of electrostatics yields 

𝐷𝑟 =
𝐴1
𝑟2
, (20) 

where 𝐴1 is integration parameter. Then, Eqs. (3) and (20) after using the gradation relation 

appeared in Eq. (1) give 

d𝜓

d𝑟
=

1

𝜀𝑟𝑟
(𝑒𝑟𝑟

d𝑢

d𝑟
+ 2𝑒𝑟𝜃

𝑢

𝑟
+ 𝑝11𝑇 −

𝐴1
𝑟2
) (21) 

The radial and hoop stresses appeared in Eq. (2) with the help of Eqs. (1) and (21) may be 

simplified by 

{
𝜎𝑟
𝜎𝜃
} =

(

 
 
[
𝑚11 2𝑚12

𝑚12 𝑚22
] {

d𝑢

d𝑟
𝑢

𝑟

} + {
𝑚31

𝑚32
} 𝑇(𝑟) + {

𝑚41

𝑚42
} 𝐶(𝑟)

)

 
 
− {

𝑚51

𝑚52
}
𝐴1
𝑟2
, (22) 
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where 𝑚𝑖𝑗 are functions of 𝑟  

𝑚11 = 𝑐𝑟𝑟 +
(𝑒𝑟𝑟)

2

𝜖𝑟𝑟
, 𝑚12 = 𝑐𝑟𝜃 +

𝑒𝑟𝑟𝑒𝑟𝜃
𝜖𝑟𝑟

, 𝑚22 = 𝑐𝜃𝜑 + 𝑐𝜃𝜃 + 2
(𝑒𝑟𝜃)

2

𝜖𝑟𝑟
,

𝑚31 =
𝑒𝑟𝑟𝑝11
𝜖𝑟𝑟

− 𝜆𝑟, 𝑚32 =
𝑒𝑟𝜃𝑝11
𝜖𝑟𝑟

− 𝜆𝜃, 𝑚41 = −𝜂𝑟,

𝑚42 = −𝜂𝜃, 𝑚51 =
𝑒𝑟𝑟
𝜖𝑟𝑟

, 𝑚52 =
𝑒𝑟𝜃
𝜖𝑟𝑟
.

 (23) 

Therefore, Eq. (9) with the help of Eq. (22) gives 

d2𝑢

d𝑟2
+ (

d𝑚11

d𝑟
+ 𝐻𝜑

2 d𝜇

d𝑟

𝑚11 + 𝜇𝐻𝜑
2
+
2

𝑟
)
d𝑢

d𝑟
+ 2(

d𝑚12

d𝑟
+𝐻𝜑

2 d𝜇

d𝑟

𝑟(𝑚11 + 𝜇𝐻𝜑
2)
+
𝑚12 −𝑚22 − 𝜇𝐻𝜑

2

𝑟2(𝑚11 + 𝜇𝐻𝜑
2)

) 𝑢 +
𝑚41

𝑚11 + 𝜇𝐻𝜑
2

d𝐶

d𝑟
 

+(

d𝑚41

d𝑟

𝑚11 + 𝜇𝐻𝜑
2
+
2(𝑚41 −𝑚42)

𝑟(𝑚11 + 𝜇 𝐻𝜑
2)
)𝐶(𝑟) +

𝑚31

(𝑚11 + 𝜇𝐻𝜑
2)

d𝑇

d𝑟
+ (

d𝑚31

d𝑟

𝑚11 + 𝜇𝐻𝜑
2
+
2(𝑚31 −𝑚32)

𝑟(𝑚11 + 𝜇𝐻𝜑
2)
)𝑇(𝑟) 

−(

d𝑚51

d𝑟

𝑟2(𝑚11 + 𝜇 𝐻𝜑
2)
−

2𝑚52

𝑟3(𝑚11 + 𝜇 𝐻𝜑
2)
)𝐴1 = 0 

(24) 

The conditions of EGP hollow sphere at its boundaries are represented as 

𝜎𝑟|𝑟=𝑎 = −𝑃1,           𝜎𝑟|𝑟=𝑏 = −𝑃2. (25) 

where 𝑃1 and 𝑃2 are the inner and outer pressures. Now, solving Eq. (24) to obtain the radial 

displacement 𝑢 and using it to get the electric potential. The integration of Eq. (20) yields 𝜓(𝑟) 
with integration constant 𝐴2. Now, the two constants 𝐴1 and 𝐴2 will be obtained after applying 

the electric conditions: 

𝜓(𝑟)|𝑟=𝑎 = 𝜓1,           𝜓(𝑟)|𝑟=𝑏 = 𝜓2. (26) 

Now, it is difficult to get the analytical solution of the second-order differential equation of 

variable coefficients appeared in Eq. (24). A semi-analytical method is presented here for this 

purpose. In this approach, radial domain is divided into some virtual sub-domains of thickness 

𝑠(𝑘) as illustrated in Figure 3. Let 𝑟 = 𝑟(𝑘) is said to be the mean radius of the 𝑘th division. That 

is 

d2𝑢(𝑘)

d𝑟2
+𝑁1

(𝑘) d𝑢
(𝑘)

d𝑟
+ 𝑁2

(𝑘)𝑢(𝑘) −𝑁3
(𝑘) = 0, (27) 

where 

𝑁1
(𝑘) =

(
d𝑚11

d𝑟
+𝐻𝜑

2 d𝜇

d𝑟
)|
𝑟=𝑟(𝑘)

𝑚11𝑟
(𝑘) + 𝜇𝑟(𝑘)𝐻𝜑

2 +
2

𝑟(𝑘)
, (28) 
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 𝑁2
(𝑘)

=
2(
d𝑚12
d𝑟

+𝐻𝜑
2d𝜇

d𝑟
)|
𝑟=𝑟(𝑘)

𝑟(𝑘)(𝑚11𝑟
(𝑘)+𝜇𝑟(𝑘)𝐻𝜑

2)
+
2(𝑚12𝑟

(𝑘)−𝑚22𝑟
(𝑘)−𝜇𝑟(𝑘)𝐻𝜑

2)

(𝑟(𝑘))
2
(𝑚11𝑟

(𝑘)+𝜇𝑟(𝑘)𝐻𝜑
2)

, 

 𝑁3
(𝑘) =

𝑚41𝑟
(𝑘)

𝑚11𝑟
(𝑘)+𝜇𝑟(𝑘)𝐻𝜑

2

d𝐶

d𝑟
|
𝑟=𝑟(𝑘)

+ (

d𝑚41
d𝑟

|
𝑟=𝑟(𝑘)

𝑚11𝑟
(𝑘)+𝜇𝑟(𝑘)𝐻𝜑

2 +
2(𝑚41𝑟

(𝑘)−𝑚42𝑟
(𝑘))

𝑟(𝑘)(𝑚11𝑟
(𝑘)+𝜇𝑟(𝑘)𝐻𝜑

2)
)𝐶 

 +
𝑚31𝑟

(𝑘)

𝑚11𝑟
(𝑘)+𝜇𝑟(𝑘)𝐻𝜑

2

d𝑇

d𝑟
|
𝑟=𝑟(𝑘)

+ (

d𝑚31
d𝑟

|
𝑟=𝑟(𝑘)

𝑚11𝑟
(𝑘)+𝜇𝑟(𝑘)𝐻𝜑

2 +
2(𝑚31𝑟

(𝑘)−𝑚32𝑟
(𝑘))

𝑟(𝑘)(𝑚11𝑟
(𝑘)+𝜇𝑟(𝑘)𝐻𝜑

2)
)𝑇 

 −(

d𝑚51
d𝑟

|
𝑟=𝑟(𝑘)

(𝑟(𝑘))
2
(𝑚11𝑟

(𝑘)+𝜇𝑟(𝑘)𝐻𝜑
2)
−

2𝑚52𝑟
(𝑘)

(𝑟(𝑘))
3
(𝑚11𝑟

(𝑘)+𝜇𝑟(𝑘)𝐻𝜑
2)
)𝐴1 

The above technique is used in Eq. (24) to change it into a system of 𝑚 equations where 𝑚 

represents the number of virtual sub-domains. Now, the solution of Eq. (27) may be expressed as 

𝑢(𝑘) = 𝐵1
(𝑘)e𝛽1𝑟 + 𝐵2

(𝑘)e𝛽2𝑟 +
𝑁3
(𝑘)

𝑁2
(𝑘)
, (29) 

where 𝛽1 and 𝛽2 are the roots of 𝛽2 +𝑁1
(𝑘)
𝛽 + 𝑁2

(𝑘)
= 0, and 𝐵1

(𝑘)
 and 𝐵2

(𝑘)
 are unknown 

parameters for the 𝑘th sub-domain. This solution is valid only for 

𝑟(𝑘) −
𝑠(𝑘)

2
≤ 𝑟 ≤ 𝑟(𝑘) +

𝑠(𝑘)

2
, (30) 

in which 𝑟(𝑘) and 𝑠(𝑘) represent mean radius and radial width of 𝑘th sub-domain, respectively. 

The unknown parameters 𝐵1
(𝑘)

 and 𝐵2
(𝑘)

 may be derived by applying sub-domain conditions. 

The continuity of all variables is imposed on the interfaces of adjacent sub-domains. That is 

𝑢(𝑘) (𝑟(𝑘) +
𝑆(𝑘)

2
) = 𝑢(𝑘+1) (𝑟(𝑘+1) −

𝑆(𝑘+1)

2
) ,

𝜎𝑟
(𝑘)
(𝑟(𝑘) +

𝑆(𝑘)

2
) = 𝜎𝑟

(𝑘+1)
(𝑟(𝑘+1) −

𝑆(𝑘+1)

2
) ,

𝜎𝜃
(𝑘)
(𝑟(𝑘) +

𝑆(𝑘)

2
) = 𝜎𝜃

(𝑘+1)
(𝑟(𝑘+1) −

𝑆(𝑘+1)

2
) ,

𝜓(𝑘) (𝑟(𝑘) +
𝑆(𝑘)

2
) = 𝜓(𝑘+1) (𝑟(𝑘+1) −

𝑆(𝑘+1)

2
) .

 (31) 

The above conditions together with Eqs. (25) and (26) yield a set of linear algebraic equations 

in 𝐴1,𝑘, 𝐴2,𝑘, 𝐵1,𝑘, 𝐵2,𝑘 (𝑘 = 1,2, … ,𝑚). Solving these equations and using them in Eqs. (29), 

the displacements 𝑢(𝑘) will be obtained in each sub-domain. The accuracy of the results is 

improved as the number of divisions increases. 
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5. Numerical examples and discussions 
 

This section is concerned with the numerical examples for analyses of EGP hollow spheres in 

hygrothermal environment. Numerical computations will be carried out for different fields with 

𝐻𝜑 = 2.23 GA/m . The dimensionless of radial displacement is 𝑢̅ = 102𝑢/𝑏  while the 

dimensionless of stresses and electric potential will be given according the case studied.  

The material properties of the inner surface of EGP hollow sphere are assumed as (Dai et al. 

2010): 

 𝑐𝑟𝑟
𝑎 = 1.11 × 1011 Pa,    𝑐𝑟𝜃

𝑎 = 7.78 × 1010 Pa,   𝑐𝜃𝑧
𝑎 = 1.15 × 1011 Pa, 

 𝑐𝜃𝜃
𝑎 = 2.2 × 1011 Pa,    𝑒𝑟𝑟

𝑎 = 15.1 C/m2,   𝑒𝑟𝜃
𝑎 = −5.2 C/m2, 

 𝜀𝑟𝑟
𝑎 = 5.62 × 10−9 C2/K m2,    𝑝11

𝑎 = −2.5 × 10−5 C/km2, 

 𝛼𝑟
𝑎 = 0.0001 K−1,     𝛼𝜃

𝑎 = 0.00001 K−1, 

 𝜂𝑟
𝑎 = 0.03 × 𝑐𝑟𝑟

𝑎 ,     𝜂𝜃
𝑎 = 0.02 × 𝑐𝑟𝑟

𝑎 . 

(32) 

Also, material properties of outer surface of EGP hollow sphere are assumed with references to 

PZT-5 as (Ghorbanpour Arani et al. 2011): 

 𝑐𝑟𝑟
𝑏 = 1.11 × 1011 Pa,     𝑐𝑟𝜃

𝑏 = 7.52 × 1010 Pa,     𝑐𝜃𝑧
𝑏 = 7.8 × 1010 Pa, 

 𝑐𝜃𝜃
𝑏 = 1.2 × 1011 Pa,     𝑒𝑟𝑟

𝑏 = 15.78 C/m2,     𝑒𝑟𝜃
𝑏 = −5.35 C/m2, 

 𝜀𝑟𝑟
𝑏 = 7.4 × 10−9 C2/K m2,     𝑝11

𝑏 = −2.94 × 10−5 C/km2, 

 𝛼𝑟
𝑏 = 8.53 × 10−6 K−1,     𝛼𝜃

𝑏 = 1.99 × 10−6 K−1, 

 𝜂𝑟
𝑏 = 0.01 × 𝑐𝑟𝑟

𝑏 ,     𝜂𝜃
𝑏 = 0.02 × 𝑐𝑟𝑟

𝑏 . 

(33) 

 

5.1 Example 1 
 

This example show that the outer surface of EGP sphere is subjected to constant pressure while 

its inner surface is traction free. Also, the outer surface is under uniform potential and its inner one 

is grounded. So, it is assumed that 

𝑃1 = 0,     𝑃2 = 10
10 Pa,      𝜓1 = 0,     𝜓2 = 10

8 W/A (34) 

The results in this example are illustrated in Figures 4-7. The dimensionless stresses and 

electric potential are expressed as 

𝜎̅𝑖 =
𝜎𝑖
𝑃2
,      𝜓̅ =

𝜓

𝜓2
. (35) 

Figure 4 shows the radial displacement 𝑢̅ is decreasing along the radial direction. The radial 

displacement 𝑢̅ of material 2 is maximum at the inner surface and minimum at the outer one 

while 𝑢̅ of material 1 is minimum at inner surface and maximum at outer one. Figure 5 shows 
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Fig. 4 Radial displacement in EGP hollow 

sphere 

Fig. 5 Radial stress distribution in EGP hollow 

sphere 

 

  
Fig. 6 Hoop stress distribution in EGP hollow 

sphere 

Fig. 7 Electric potential distribution in EGP 

hollow sphere 

 

 

that 𝜎̅𝑟 vanishes at inner surface and 𝜎̅𝑟 = −1 at 𝑟̅ = 1, which satisfies its boundary conditions. 

It is clear that the value of 𝜎̅𝑟 of graded sphere is the greatest one comparing to those of 

homogenous materials. Figure 6 shows that 𝜎̅𝜃 is decreasing along the radial direction. The 

graded sphere gives the maximum hoop stress 𝜎̅𝜃 at its inner surface. Also, the homogeneous 

sphere of material 1 gives the minimum hoop stress 𝜎̅𝜃 at the outer surface. Figure 7 shows that 

the electric potentials 𝜓̅ of graded sphere and homogeneous sphere of material 1 are increasing 

along the radial direction of EGP sphere. The electric potential 𝜓̅ of homogeneous sphere of 

material 2 is no longer increasing and has its absolute maximum near outer surface of EGP sphere. 

Also, 𝜓̅ satisfies the boundary conditions that given in Eq. (33). 

 
5.2 Example 2 
 

The inner surface of EGP sphere is under constant pressure and sphere is free of electric 

potential. In this case, the sphere acts as a sensor with 

𝑃1 = 10
10 Pa,     𝑃2 = 0,      𝜓1 = 𝜓2 = 0. (36) 
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Fig. 8 Radial displacement in EGP hollow 

sphere 

Fig. 9 Radial stress distribution in EGP hollow 

sphere 

 

  
Fig. 10 Hoop stress distribution in EGP hollow 

sphere 

Fig. 11 Electric potential distribution in EGP 

hollow sphere 

 
 

The results of this example are plotted in Figures 8-11. The dimensionless stresses are given by 

𝜎̂𝑖 =
𝜎𝑖
𝑃1

 (37) 

Figures 8-11 show the distributions of all fields of the EGP hollow sphere. Figure 8 shows that 

the radial displacements 𝑢̅ of the graded sphere and homogeneous sphere of material 1 are no 

longer decreasing and has its absolute minimum at 𝑟̅ = 0.48. However, the radial displacement 𝑢̅ 

of the homogeneous sphere of material 2 is directly decreasing along the radial direction. Figure 9 

shows that 𝜎̂𝑟 satisfies the boundary conditions. The variations between radial stresses 𝜎̂𝑟 

increase in the neighborhood of 𝑟̅ = 0.4 in which the absolute maximum value of 𝜎̂𝑟 occurs for 

the graded sphere and the homogeneous sphere of material 2. Figure 10 shows that 𝜎̂𝜃 is 

decreasing to get its absolute minimum at outer surface of graded sphere and sphere of material 2. 

While hoop stress 𝜎̂𝜃 of sphere of material 1 is no longer decreasing and has its absolute 

minimum at 𝑟̅ = 0.4. It increases again to be the maximum one at the outer surface. Figure 11 

shows that 𝜓 vanishes at inner and outer surfaces according to boundary conditions. The absolute 

maximum values of the electric potential 𝜓 of graded sphere and homogeneous sphere of 
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Fig. 12 Radial displacement in EGP hollow 

sphere 

Fig. 13 Radial stress distribution in EGP hollow 

sphere 

 

  
Fig. 14 Hoop stress distribution in EGP hollow 

sphere 

Fig. 15 Electric potential distribution in EGP 

hollow sphere 
 

 

material 2 occur at different positions. The electric potential 𝜓 of sphere of material 1 is no 

longer decreasing and has its absolute minimum at 𝑟̅ = 0.4. 

 

5.3 Example 3 
 

The sphere is traction free and its inner surface is under a constant voltage and it is grounded at 

the outer surface. That is 

𝑃1 = 𝑃2 = 0,     𝜓1 = 10
8 W/A,     𝜓2 = 0. (38) 

Figures 12-15 show the plots of the radial displacement 𝑢̅, radial stress 𝜎𝑟, hoop stress 𝜎𝜃, 

and dimensionless electric potential 𝜓̂ = 𝜓/𝜓1 vs the radial direction of sphere. Figure 12 shows 

that 𝑢̅ is increasing along the radial direction to reach its maximum at the outer surface. The 

radial displacements of graded sphere are the greatest ones. Figure 13 shows that 𝜎𝑟 satisfies the 

boundary conditions it vanishes at the sphere boundaries. The minimum values of 𝜎𝑟 occur at the 

interval 0.25 ≤ 𝑟̅ ≤ 0.33. Figure 14 displays the hoop stress 𝜎𝜃 which increases to its absolute 

maximum at the outer surface of homogeneous sphere of material 1. This is not the same for other 

spheres. Figure 15 shows that 𝜓̂ vanishes at the outer surface and is equal to 1 at 𝑟̅ = 0.2. The 
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Fig. 16 Radial displacement in EGP hollow 

sphere 

Fig. 17 Radial stress distribution in EGP hollow 

sphere 

 

  
Fig. 18 Hoop stress distribution in EGP hollow 

sphere 

Fig. 19 Electric potential distribution in EGP 

hollow sphere 
 

 

variations between electric potentials 𝜓̂ decrease at 𝑟̅ = 0.6. 
 

5.4 Example 4 
 

The sphere is traction free and insulated, that is:  

𝑃1 = 𝑃2 = 0,      𝜓1 = 𝜓2 = 0. (39) 

Figures 16-19 show the radial displacement, radial stress, hoop stress and electric potential 

distributions in sphere, respectively. Figure 16 shows that 𝑢̅ is increasing to get its absolute 

maximum at outer surface of the homogeneous sphere of material 1. However, 𝑢̅ decreases to its 

absolute minimum at outer surface of homogeneous sphere of material 2. Finally, 𝑢̅ of the graded 

sphere is no longer decreasing and has its absolute minimum at 𝑟̅ = 0.38. Figure 17 shows that 

𝜎𝑟 satisfies the conditions at the sphere boundaries. The absolute maximum of 𝜎𝑟 occurs at 

0.30 ≤ 𝑟̅ ≤ 0.35  for homogeneous sphere of material 2 and graded sphere. Also, absolute 

minimum of 𝜎𝑟 occurs at 𝑟̅ = 0.35 for homogeneous sphere of material 1. Also, Figure 18 

shows that 𝜎𝜃 of homogeneous sphere of material 1 is increasing along the radial directions while 

those of graded material and homogeneous sphere of material 2 are decreasing. Figure 19 shows 
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that 𝜓 vanishes at 𝑟̅ = 0.2 and 𝑟̅ = 1 as given in Eq. (39). The absolute maximum value of 𝜓 

occurs at 𝑟̅ = 0.5 for graded sphere and homogeneous sphere of material 2. Also, The absolute 

minimum value of 𝜓 occurs at 𝑟̅ = 0.6 for homogeneous sphere of material 1. 

 

 

6. Conclusions 
 

•  This article presented the hygrothermal analyses of functionally graded piezoelectric hollow 

sphere. 

•  A semi-analytical technique is improved to deduce all fields in which the radial stress and 

electric potential are assumed to be under combined mechanical and electrical loadings. 

•  Four examples are discussed to illustrate different types of hollow spheres. First, the outer 

surface of EGP sphere is subjected to constant pressure under uniform potential while its inner 

surface is traction free and grounded. Second, the inner surface is under constant pressure and 

sphere is free of electric potential. Third, the sphere is traction free and its inner surface is under a 

constant voltage while its outer surface is grounded. Finally, the sphere is traction free and 

insulated. 

•  From the results, it is clear that the gradation plays an important role to control the distribution 

of all fields. Thus, the selection of a proper value of graded index 𝑛, a suitable radial pressure and 

electric potential make it is possible for engineers to design the EGP hollow sphere that can meet 

other special requirements. 

•  It is concluded that the semi-analytical solution is an accurate and reliable and this method is 

simple and effective. 
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