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Abstract.  First time, an exact solution for free vibration of the Levy-type rectangular laminated plate is 

developed considering the most efficient Zig-Zag theory (ZIGT) and third order theory (TOT). The plate is 

subjected to hard simply supported boundary condition (Levy-type) along x axis. Using the equilibrium 

equations and the plate constitutive relations, a set of 12 m first order differential homogenous equations are 

obtained, containing displacements and stress resultant as primary variables. The natural frequencies of a 

single-layer isotropic, multi-layer composites and sandwich plates are tabulated for three values of 

length-to-thickness ratio (S) and five set of boundary conditions and further assessed by comparing with 

existing literature and recently developed 3D EKM (extended Kantorovich method) solution. It is found that 

for the symmetric composite plate, TOT produces better results than ZIGT. For antisymmetric and sandwich 

plates, ZIGT predicts the frequency for different boundary conditions within 3% error with respect to 3D 

elasticity solution while TOT gives 10% error. But, ZIGT gives better predictions than the TOT concerning 

the displacement and stress variables. 
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1. Introduction 
 

In recent years, laminated composite structures are extensively used in some of the weight 

sensitive and sophisticated engineering applications such as in aerospace, civil, mechanical and 

naval industries where these structures are subjected to various loadings (static and dynamic loads) 

and boundary conditions. Unlike the isotropic plate structures, composite laminates experience 

different couplings among bending, extension and twisting pertaining to its varied stacking order 

among the layers. Hence, the development of a computationally easy, efficient and reliable 

dynamic analysis of laminated plates has been the topic of research since last few decades. The 

two-dimensional (2D) theories are preferred for the design and optimization of laminated 

structures as it is relatively simple and easy to execute in comparison to 3D solutions with 

reasonable accuracy. To address the above concern, 2D theories of varying computational 

efficiency and accuracy are available in abundance for laminated plates which can broadly be 
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classified as equivalent single layer (ESL) theories, refined/modified single layer (RESL) theories, 

layerwise theories (LWT) and zig-zag theories (ZIGT). In recent review articles (Sayyad and 

Ghugal 2015, Caliri et al. 2016, Sayyad and Ghugal 2017), elaborate reviews of 2D plate theories 

are presented considering various computational methods on static as well as free vibration 

analysis of different laminated composite and sandwich structures. Analytical solutions are 

preferred over numerical solutions for better accuracy and simplicity. 

Leissa and his coworkers (Leissa 1973, Leissa and Kang 2002) presented the free vibration 

analysis of plate based on the classical laminate plate theory (CLPT), which is based on 

Kirchhoff’s hypothesis, where the transverse normal and shearing effects are neglected. Hence, the 

CLPT provides good results for thin plates, while in other hand it over-predicts the natural 

frequencies and under-predicts the deflections for moderately thick isotropic/composite plates. 

Then, the first order shear deformation theory (FSDT) is proposed for moderately thick plates 

(Reissner 1945, Mindlin 1951) to overcome the deficiency of CLPT. The FSDT does not satisfy 

the shear traction free conditions at the top and bottom surfaces of the plates, therefore a shear 

correction factor is required in FSDT in order to satisfy the transverse shear traction free 

conditions on the top and bottom surfaces of the plate. Based on FSDT, the vibration response of 

laminated composite plates are presented in references (Xiang and Wei 2004, Hashemi and 

Arsanjani 2005, Ferreira et al. 2005, Ferreira et al. 2009, Thai and Choi 2013). Though, FSDT is 

good in predicting the vibration responses with reasonable accuracy for thin and moderately thick 

plates, but its dependence on appropriate choice of shear correction factor makes it inconvenient 

for accurate analysis of thick plates. The limitations of FSDT are overcome by the development of 

higher order shear deformation theories (HSDT) which involves the transverse shear stress 

function. The HSDT is applied to study the behaviour of laminated composite and sandwich plates 

for buckling and vibration (Noor 1973, Kant and Swaminathan 2001, Akavci and Tanrikulu 2008, 

Swaminathan and Patil 2008, Meiche et al. 2011, Mantari et al. 2011, Mahi et al. 2015) cases. 

Based on a global HSDT, Matsunaga presented the free vibration analysis of cross-ply (Matsunaga 

2000) and angle-ply (Matsunaga 2001) laminated composite plates taking into account the effects 

of shear deformations and rotary inertia. However, the above advanced two-dimensional (2D) 

laminate theories were assessed for their accuracy against the 3D solutions of plates subjected to 

Navier-type supports (all round simply supported boundary conditions). Such an assessment can 

not provide the complete evaluation of theories because boundary effects are absent for the 

simply-supported edges (Karama et al. 1993). Very limited research articles have been published 

for both static and dynamic analysis of laminated plates considering the Levy-type support 

conditions. 

Analytical free vibration solutions for elastic rectangular laminated plates with Levy-type 

boundary conditions have been presented for symmetric cross-ply (Khdeir 1988) and unsymmetric 

cross-ply plates (Khdeir 1989) and for both static and free vibration analysis of symmetric 

cross-ply plates (Chen and Liu 1990) based on the FSDT. Khdeir and Librescue (1988) presented 

free vibration and buckling analysis of symmetric cross-ply laminated elastic plates using a 

higher-order theory. Liew (1996) presented the free vibration of thick symmetric laminates using 

Ritz solution. Recently, Hashemi et al. (2011) presented exact solutions for free vibration of 

Levy-type rectangular thick plates via Reddy’s third-order shear deformation plate theory. 

Numerical results are presented for single layer isotropic plate. Thai and Kim (2012) presented the 

free vibration analysis of single-layer Levy-type orthotropic plate based on two variable refined 

plate theory (RPT). Very recently, Thai et al. (2017) presented a new simple higher order shear 

deformation plate theory for static and free vibration analysis of plates based on RPT and 3D 
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Fig. 1 Geometry of the laminated plate 

 

 

elasticity theory. In this paper also, numerical results are presented for the isotropic plate. 

The efficient layerwise zig-zag theory (ZIGT) proposed by Kapuria and Kulkarni (2007) for 

laminated structures, has emerged as the best possible compromise between the accuracy and 

computational efficiency. The in-plane displacements in this theory are assumed to have a 

layerwise linear variation with a global third order variation across the thickness. But the number 

of displacement variables is reduced to only five, as in the smeared theory like the first order shear 

deformation theory (FSDT) and third order theory (TOT), by enforcing the conditions of 

transverse shear stress continuity at layer interfaces and zero shear traction at the top and bottom 

surfaces. Recently, Kumari and Kapuria (2011) presented the static analysis of rectangular 

cross-ply Levy-type plates using zig-zag theory employing the mixed formulation approach. As 

per the author's knowledge, there exist no free vibration analysis of composite and sandwich plates 

based on efficient zig-zag theory subjected to Levy-type boundary conditions. The aim of this 

paper is to present the exact analytical free vibration solution for Levy-type composite and 

sandwich plates. The natural frequencies and mode shapes for different boundary conditions are 

obtained for plates with varied cross-ply lay-ups. Effect of inplane modulus ratios and 

span-to-thickness ratios on the plate natural frequencies are evaluated and discussed. As a special 

case of ZIGT, the TOT solution is also developed and both the results are with the 3D exact results 

for simply supported case and with the 3D EKM results for other type of boundary conditions. The 

numerical results are estimated and presented for the laminated composite and sandwich plates 

which will help to assess the accuracy of other numerical solutions. The results from this theory 

are compared with the previously published results and found to be in good agreement. 

 

 

2. Mathematical modelling 
 
2.1 Geometry 

 
Let us consider, a multilayered orthotropic rectangular plate of dimensions (a×b×h) along x, y 

and z-axis, respectively as illustrated in Fig. 1. The principal material direction x3 is parallel to 

reference axis z whereas other material directions x1 and x2 can make 0 or 90 to the inplane  

reference axes x, y. The plies are numbered from the bottom (1st layer) to top (Lth layer). The z 

coordinate of the bottom and top surface of kth ply is denoted as z = zk-1 and z = zk, respectively. 
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The plate is subjected to hard simply supported along x-axis (i.e., x = 0 and x = a) while along 

y-axis (i.e., y = -b/2 and y = +b/2), any combination among clamped, free and simply supported 

boundary conditions can be applied. The mid-plane (x-y) of the plate is chosen as a reference plane 

(z = 0). 

 
2.2 The strain-displacement and constitutive relations 
 

The linear strain displacement relations of the orthotropic elastic laminate with respect to the 

plate axis system (x-y-z) are considered as 

, ,

, , , , , ,

, ,

, ,

        

        

x x x y y y

yz y z y zx x z x xy x y y x

u u

u w u w u u

 

  

= =

= + = + = +
 (1) 

The linear constitutive relations of the orthotropic elastic laminate with the usual assumption of 

negligible transverse normal stress (σz = 0) are as given below 

11 12 12 22

44 55 66

, ,

, ,

         

        

x x y y x y

yz yz zx zx xy xy

Q Q Q Q

Q Q Q

     

     

= + = +

= = =
 (2) 

where εx, εy are normal strains, σx, σy are normal stresses, γxy, γyz, γzx are shear strains, τxy, τyz, τzx are 

shear stresses and Qij (i,j = 1, 2…6) are the elements of reduced stiffness matrix. 

 
2.3 Kinematics assumptions 
 

The displacements components uα (α = x, y) and w are considered along x, y and z directions, 

respectively. The inplane displacements uα are approximated as a combination of a third-order 

variation in z over the entire laminate thickness and a layerwise linear variation with discontinuity 

in slopes uα,z (subscript comma means differentiation) at the layer interface. The out-of-plane 

displacement, w is assumed to be uniform across the thickness (Kapuria and Kulkarni 2007). 

2 3

0,( , , , ) ( , , ) ( , , ) ( , , ) ( , , ) ( , , )k ku x y z t u x y t zw x y t z x y t z x y t z x y t
      = − + + +  (3a) 

0( , , , ) ( , , )w x y z t w x y t=  (3b) 

Here, ku
  denotes the translation components of the kth layer and k


 corresponds to its shear 

rotation, which has a piecewise linear variation across the layers. ξα and ηα are the quadratic and 
cubic terms in z, which have cubic global variation through the thickness. Using the 2(L-1) number 
of conditions, each for the continuity of uα and the transverse shear stresses τij (i, j= x, y, z) at the 
layer interfaces and the four shear traction-free conditions at the top and bottom surfaces at z = z0, 
zL, the (4L+ 4) variables ku

 , k
 , ξα and ηα in Eq. (3a), are expressed in terms of variables 0u

  and 
0

 to yield 

0 0, 0( , , , , ) ( , , ) ( , , ) ( ) ( , , )R
ku x y x z t u x y t zw x y t z x y t

   = − +  (4) 

for zk-1≤ z≤ zk, where Rk(z) is a 2×2 matrix of layerwise functions of z of the form. 
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2 3

1 2 3 4( )k k kz z z z= + + +R R R R R  (5) 

1 2 3

k k
R , R , R and R4 are 2×2 coefficient matrices which rely on the properties of plate material and 

the stacking order and their expressions are given in Ref. (Kapuria and Kulkarni 2007). 

In the smeared third order theory (TOT), the layerwise terms ku
  

and k
 in Eq. (3a) are 

replaced by 0u
  and 0

 . The inplane displacements, uα can be expressed using Eq. (4) with Rk(z) 

being replaced by the global function R(z) for all layers after satisfying the traction free conditions 

at both the top and bottom surfaces as 

3 2

2( ) [ 4 / 3 ]z z z h= −R I   (6) 

Where I2 is 2×2 unity matrix. Eqs. (3b) and (4) are substituted into Eq. (1) to yield 

, , ,

, , ,

, , , , , ,

0 0, 11 0 12 0

0 0, 21 0 22 0

0 0 0, 21 0 11 0 22 0 12 0

21, 0 22, 0

11, 0 12, 0

2

x x x x y x

y y x y y y

x y y x x x x y y x y y

x y

x y

k k

x xx

k k

y yy

k k k k

xy xy

k k

yz z z

k k

zx z z

u zw R R

u zw R R

u u zw R R R R

R R

R R

  

  

    

  

  

= − + +

= − + +

= + − + + + +

= +

= +

 
(7) 

 
 

3. Equations of equilibrium and boundary conditions 
 

The Hamilton’s principle for the elastic medium can be expressed, using the notation  

1
1

... (...)
k

k

zL

k z
dz

−

+
−

=
=   for integration across the thickness as 

[ ]

0

                         

L

x x y y x x
t

y y xy xy yz yz zx zx

n n ns s n
t

z

A
dAdt

dsd

u u u u w

u u w t

w               

     


+ + + + + + +

+ +− =

 

 
 (8) 

where A denotes the surface of the mid-plane area of the plate and ΓL represents the mid-plane 

boundary curve of the plate with normal and tangent as n and s, respectively. The variational 

equation is expressed in terms of δu0, δw0 and δψ0, to yield the governing equations and boundary 

conditions. 

 

3.1 Inertia matrices 
 

Eqs. (4) and (3b) for u and w can be expressed as 

1 1 2 2( ) , ( )u f z u w f z u = =                  (9a) 
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1 1 2 2( ) , ( )u f z u w f z u  = =             (9b) 

with 

1 0 0 0 0 0 0 0 0 0

1 2 2 1

[ ] ,

( ) [ ] , ( ) [1]

              

I   I   R            

d x y x y x y

T T T T

z T T

k

u u w u u w w

f z z f z

   = − = − −
 

= =

 

The inertia terms in Eq. 8 can be expressed as 

1 1 1 1 2 2 2 2

1 1 2 2

( ) ( ) ( ) ( )

( ) ( )                           

T T T T T

T T

u u ww u f z f z u u f z f z u

u Iu u Iu

   

 

+ = +

= +

 (10) 

where the inertia matrices I and I are of size 6×6 and 1×1 and defined as 

1 1 2 2( ) ( ) , ( ) ( )             
T TI f z f z I f z f z = =  (11) 

 

3.2 Stress resultants 
 

Substituting Eq. (4) and (3b) for displacements (ux, uy, uz) and Eq. (7) for strain components (εx, 

εy, γxy, γyz, γzx) into Eq. (8) yields 

, , , ,

, , , ,

0 0 0 0 0, 0, 0,

0 0 0 0 0 0

0 0 0, , 0 0 0

[ [ ( ) 2

]

[ ( ) [ ]

(

 

  

   

x x y y x y y x

x x x y y x y y

n s n s
L

x y xy x xx y yy xy xy
t A
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i

N u N u N u u M w M w M w

P P P P Q Q dA

N u N u M w V M w P P ds dt

M s
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     
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
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+ + + + + +

− + − + + + +

− 

 



 0) ( ) 0i iw s =

 
(12) 

where the lateral surface has corners at s = si. The inplane stress resultants (Nx, Ny, Nxy), bending 

moments (Mx, My, Mxy), higher order moments (Px, Pyx, Pxy), shear resultants (Qx, Qy,) and 

Kirchhoff shear resultants (Vx, Vy,), are defined in the expanded form as given below 

,
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 

 

(13) 

218



 

 

 

 

 

 

Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory 

 

 

where A and Ā are plate stiffness matrices. 

Using Eqs. (12) and (10) in Eq. (8), the area integral is expressed in terms of 0 0 0, , , 
x y

u u w  

0x
 and 0 .

y
  Then applying the Green’s theorem wherever required, the terms involving 0 ,

x
u

0 , 
y

u 0 , 
x


0 , 

y


0, xw
 
and 0, yw

 
in the integrand of ΓL are expressed in terms of components n, s. It 

gives forth the following five number of equilibrium equations 

11 0 13 0, 15 0 , ,

22 0 24 0, 26 0 , ,

31 0 , 33 0, 35 0 , 42 0 , 44 0,

46 0 , 33 0 , , ,

0

0

2 0                      

x x x x x xy y

y y y xy x y y

x x xx x x y y yy

y y x xx xy xy y yy

I u I w I N N

I u I w I N N

I u I w I I u I w
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



− + − + + =

− + − + + =

− + − − +

− − + + + =

51 0 53 0, 55 0 , ,

62 0 64 0, 66 0 , ,

0

0

                     

x x x x x yx y x

y y y xy x y y y

I u I w I P P Q

I u I w I P P Q





− + − + + − =

− + − + + − =

 (14) 

The variationally consistent boundary conditions on ΓL, are obtained by setting separately each 

of the terms involving 0 0 0 0, 0,  ,  ,  ,  n s n nu u w w    
 
and 0s in the boundary integral to zero, 

since these variations are independent 
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and at corners si 

0 0( ) ( )        or         ( ) ( )i i ns i ns iw s w s M s M s=  =   (15) 

The boundary conditions considered in this analysis on the edges at  / 2y b=  are as follows 

Hard-simply supported (S): 0 0 00,   0,   0,   0,   0,   0,y x y y xN u w M P = = = = = =  

(16) Hard-clamped (C): 0 0 0 0, 0 00,   0,   0,   0,   0,   0,y x y y xu u w w  = = = = = =  

Free(F): ,0,   0,   0,   0,   0,   0.y yx y yx x y y yxN N V M M P P= = + = = = =  
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4. Levy-type solution 
 

The boundary conditions at the hard-simply supported edges at x = 0, a are taken as 

0 0 00,   0,   0,   0,   0,   0y x x x yu w N M P = = = = = =  (17) 

The analytical solution is obtained considering a cross-ply laminate and satisfying the 

hard-simply supported boundary conditions by taking the solution in terms of Fourier series in x 

 

(18) 

where /m m a=  and (...)m denotes the mth Fourier component, a function of y. The solution is 

obtained in y direction, following the mixed formulation approach, in terms of the twelve primary 

state variables given as follows 

0 0 0 0, 0 0

,

,  ,  ,  ,  ,  ,  ,  ,  

    ,  ,  ,( )  

m m m m m m m

m m m

x y ym x y y xy

m

y xy x m y y xy

X
u u w w N N

V M M P P

  
= 

 +



 (19) 

which appear in the boundaries at edges / 2y b= . Eq. (18) is substituted into Eqs. (14) and (13), 

the equilibrium and plate constitutive equations respectively, to yield the system of 12 first order 

ODEs for the variables Xm for each Fourier component m, as follows 

   , 12 112 112 12 12 12

m m

m y mH X K X
 

   =     (20) 

The elements of matrix [Hm] and [Km] are given in Appendix A. 

 
4.1 Frequency and mode shape extraction technique 

 
The general solution of the homogeneous, linear ODEs with constant coefficients given by Eq. 

(20) is obtained considering its complementary solution  c y

m mX e Y=
 
which on substitution into Eq. 

(20) yields 

m m m

m m m mK Y H Y M Y Y =  =  (21) 

with Mm  = (H m)-1 K m. Hence, λ and Ym are the eigenvalue and the eigenvector pairs of the real 

matrix Mm . The matrix Mm  is first reduced to Hessenberg form and then the eigenvalues and 

eigenvectors are obtained by the eigenvalue algorithm known as the QR algorithm. The 

complementary solution is the sum of twelve solutions for the twelve eigenvalues of Mm . 
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The general solution can be written as 

12

1

( )m m

m j j

j

X F y C
=

=   (22) 

where the functions ( )m

jF y depend on the nature of the twelve eigenvalues and the detailed 

expressions can be found in Ref. (Kumari and Kapuria 2011). 

The coefficient matrix 
m

jF of Eq. (22) depends on frequency ωm. For non-trivial solution, its 

determinant must be zero. First ωm is bracketed by taking initial guess and can be reckoned by root 

finding of the equation ( ) 0m

jdet F =  using the methodology given by Kapuria and Achary (2005). 

In the general solution of Eq. (22), the twelve number of arbitrary constants are obtained by 

solving the twelve linear algebraic equations which are yielded using the same number (six each at

/ 2y b= ) of boundary conditions. After solving for ,m

jC  the variables Xm are obtained from Eq. 

(22). Subsequently, the displacements, stress resultants and hence the stresses are obtained at any 

point of the plate by using Eqs. (18), (7) and (2) considering a limited number of terms, say M, in 

the Fourier series. 

 

 
5. Result and discussion 

 
The best way to assess the accuracy of 2D theories is by comparing with the 3D analytical 

solutions which do not make any a priori assumptions of field variables through the thickness. 

Hence, the effectiveness of the present ZIGT in estimating the free vibration behaviors has been 

investigated for Levy type cross-ply plates by comparison with the other 2D and 3D solutions. The 

TOT solution can also be obtained using the same number of displacement state variables without 

requiring any shear correction factor and hence the present TOT results are also compared with the 

TOT results. Unless mentioned otherwise, the non-dimensional frequency parameter ϖ considered 

in the present analysis is as follows: 0 2/ ,maS E  = where ωm is the calculated frequency, S is the 

span-to-thickness ratio, ρ0 is the mass density in Kg/m3 and E2 is the minor elastic modulus in 

N/m2. The dimensionless material parameters used in the present investigation are as follows: 

E1/E2 = 40, E2 = E3 = 6.9 GPa, G12 = G13 = 0.6E2, G23 = 0.5E2, ν23 = ν13 = ν12 = 0.25. Any 

modification to the material constants mentioned above is clearly specified in the relevant places. 

The plates are designated as per the boundary conditions subjected on the edges at y = ∓b/2. A C-S 

plate, for instance, designates a plate subjected to clamped (C) boundary condition at y = −b/2 and 

simply supported (S) at y = b/2. For comparison purpose, the EKM results are transformed to Levy 

model coordinate system. Hence, the laminate sequence in Ref. (Kumari and Behera 2017) is 

altered to match with the present model. The percentage errors are calculated with respect to the 

reference results and is as follows 

% error = [((2D frequency)-(reference frequency))/(reference frequency)]×100 

The modal displacement and stresses are non-dimesionalized as 
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(23) 

 

5.1 Validation 
 

The accuracy of the present ZIGT result has been verified by direct comparison with the 3D 

exact (Kapuria and Achary 2005) and 3D EKM (Kumari and Behera 2017) results for all round 

simply supported (S-S) case in Table 1 and with the results of FSDT (Thai et al. 2017) and third 

order shear deformation theory (TSDT) (Hashemi et al. 2011) for other type of boundary 

conditions in Table 2. In Table 1, the dimensionless fundamental natural frequencies (ϖ) of an 

un-symmetric two layer [90 and a symmetric four layer [90] lay-up cross-ply 

laminated plates subjected to S-S boundary conditions are presented for S value of (5, 10, 20, 50, 

100) and are compared against the reference 3D EKM and 3D exact results. As can be seen from 

the table that for thin plates the 2D theories have predicted frequencies quite accurately, but for 

thicker plates, these theories over predict the frequencies. The maximum error being 7.74% for 

ZIGT and 6.58% for TOT in case of the two-layered thick plate (S=5). The error percentage is 

1.33% and 0.99%, respectively, for ZIGT and TOT for the four-layered thick plate. The free 

flexural fundamental frequency of Levy-type single layer isotropic plate is presented in Table 2 

and are compared with the TSDT (Hashemi et al. 2011) and FSDT (Thai et al. 2017) results for 

different types of boundary conditions. For this table, the frequency parameter 
2

0 1( ) / ,ma h D  =  

where
3 2

1 /12(1 )D Eh = − is the flexural rigidity of the plate. 

The isotropic material constants are E = 6.9 GPa and Poisson’s ratio, ν = 0.3. The results are 

presented for square and rectangular plates for S = 5 and 10. It is observed from the table that the 

ZIGT results are in excellent agreement with the TSDT (Hashemi et al. 2011) results for all type of 

boundary conditions, whereas the FSDT results except for S-S case are erroneous as compared to 

the higher order theory results. Hereafter, the dimensionless natural frequencies of 3D EKM are 

given for reference whereas the percentage errors of the present ZIGT and TOT are given for ready 

assessment. 

 

5.2 Assessment 
 

In this section, the veracity of ZIGT and TOT in predicting free vibration characteristics are 

assessed against the 3D EKM solution for multilayered composite and sandwich plates. The lowest 

five flexural frequencies for an un-symmetric two layer [90°/0°] laminated thick (S=5) plate is 

presented in Table 3 for different combination of boundary conditions. The material parameters 

considered for this table are as follows: E1/E2 = 30, G12/E2 = G13/E2 = 0.5, G23/E2 = 0.35, ν12 = ν13 = 

0.3, ν23 = 0.49 with E2=6.9 GPa. It is observed from the table that at lower modes, the % error for 

S-S case is less as compared to other boundary conditions. The C-C boundary support shows the 

highest % error i.e., 18.3% and 17.5% for ZIGT and TOT, respectively.  

The effect of the span-to-thickness ratio (S) on the fundamental natural frequencies of a 

three-layer [90°/0°/90°] rectangular plate for boundary conditions C-C, S-C, S-S, F-C, F-S and 

F-F is presented in Table 4. As observed in Table 4, here also, the % error with respect to 3D EKM 

frequency is maximum for C-C boundary condition irrespective of plate span-to-thickness ratios 

(S=2, 5, 10). As S value increases, the frequency % error decreases: For S-S case it reduces to 
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Table 1 Comparison of fundamental natural frequencies for all-round simply-supported (S-S) boundary 

conditions 

Laminate scheme Theory 
S 

5 10 20 50 100 

90 

ZIGT 9.187 10.606 11.116 11.277 11.301 

TOT 9.087 10.568 11.105 11.275 11.300 

3D EKM† 8.526 10.366 11.036 11.263 11.297 

3D Exact‡ 8.526 10.366 11.036 11.263 11.297 

[90] 

ZIGT 10.830 15.127 17.652 18.673 18.836 

TOT 10.787 15.107 17.647 18.672 18.836 

3D EKM† 10.682 15.068 17.635 18.699 18.835 

3D Exact‡ 10.682 15.068 17.635 18.699 18.835 

†Kumari and Behera (2017), ‡Kapuria and Achary (2005) 

 

 
0.03%, whereas for C-C case it reduces to 3.83% for moderately thick (S=10) plate in case of 

ZIGT prediction. 

Effect of inplane elastic modulus ratio (E1/E2) on the fundamental natural frequency of an 

unsymmetrical four layer [90] moderately thick (S=10) plate is presented in Table 5. It 

is observed from the table that as the ratio E1/E2 decreases thereby making the plate material closer 

to isotropic condition, the error percentage of 2D theories is decreased, for instance, for E1/E2=40, 

the ZIGT and TOT % errors are 1.83% and 2.38% respectively, while for E1/E2=2 the 

corresponding errors decreased to -0.14% and -0.11%. Hence, it suggests that the 2D theories 

perform well for plates made of isotropic materials. The ZIGT results are closer to 3D EKM 

results than the TOT results for E1/E2=40, 20, 10 and for E1/E2=2, the TOT results seem superior to 

ZIGT. 

The percentage errors of the lowest eight flexural frequencies for a three-layer [] 

composite laminated plate is presented in Table 6 for S-S and C-C cases with S=10 and 20 along 

with the reference 3D EKM results. The non-dimensional frequency parameter
2 2

0 2( / ) /ma h D   = , where 
3

2 2 12 21/12(1 )D E h  = − . Here in the table, we can see, the 2D theories 

predict quite accurate results for S-S case and the error percentage is more for C-C case with 

maximum error 7.36% for the moderately thick plate. The TOT results come more accurate as 

compared to the ZIGT results both for S-S and C-C cases. 

The ZIGT and TOT frequency percentage errors for the lowest five flexural frequencies are 

presented in Table 7 with respect to the 3D EKM results for a five layered sandwich plate 

[90/0/Core/0/90] under five boundary conditions (S-S, C-C, C-S, C-F and F-F) for S = 5, 10 

and 20. The material constants those follow are considered for face and core layers, Face: E1 = 181 

GPa, E2 = E3 = 10.3 GPa, G12 = G13 = 7.17 GPa, G23 = 2.87 GPa, ν12 = ν13 = 0.28, ν23 = 0.33, ρ = 

1578 kg/m3, Core: E1 = E2 = 0.276 GPa, E3 = 3.45 GPa, G13 = G23 = 0.414 GPa, G12 = 0.1104 GPa, 

ν12 = 0.25, ν13 = ν23=0.02  and ρ = 1000 kg/m3. The frequency parameter 0 2/ ,maS E  = where ρ0 

=1578 kg/m3 and E2 = 10.3 GPa. From Table 7, it is clear that the frequency increases with the 

increase in S value i.e., the thinner the plate, higher the plate frequency. The lowest frequencies are 

noted for F-F boundary case, while the highest frequencies are noted for C-C boundary case for all  
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Table 2 Fundamental natural frequency 
2

0 1( ) /ma h D  =  of square and rectangular single layer isotropic 

plate for S=5 and 10 

b/a S Theory S-S C-C S-C F-C F-S F-F 

1 

5 

ZIGT 17.447 22.526 19.763 11.370 10.697 8.983 

TSDT (Hashemi et al. 2011) 17.452 22.536 19.770 11.374 10.700 8.984 

FSDT (Thai et al. 2017) 17.449 21.584 19.388 11.573 10.921 9.082 

10 

ZIGT 19.060 26.703 22.396 12.249 11.371 9.441 

TSDT (Hashemi et al. 2011) 19.065 26.708 22.402 12.252 11.374 9.442 

FSDT (Thai et al. 2017) 19.065 26.333 22.270 12.366 11.474 9.482 

2 

5 

ZIGT 11.369 12.291 11.780 9.659 9.571 9.089 

TSDT (Hashemi et al. 2011) 11.372 12.294 11.783 9.661 9.573 9.090 

FSDT (Thai et al. 2017) 11.371 12.177 11.736 9.741 9.652 9.150 

10 

ZIGT 12.065 13.272 12.591 10.199 10.086 9.551 

TSDT (Hashemi et al. 2011) 12.068 13.275 12.594 10.200 10.087 9.555 

FSDT (Thai et al. 2017) 12.067 13.239 12.580 10.237 10.122 9.577 

 

Table 3 Lowest five flexural frequencies 0 2/mh E  = for a two layer [900] laminated composite 

plate (S=5) and the corresponding % error of ZIGT and TOT frequencies (material parameters: E1/E2 =30, 

G12/E2 = G13/E2 = 0.5, G23/E2 = 0.35, υ12 = υ13 = 0.3; = 0.49) 

BCs Theory Mode sequences 

  1 2 3 4 5 

S-S 

3D EKM† 0.3117 0.6361 0.6361 0.8532 1.0185 

ZIGT (% error) 6.23 5.72 13.7 4.14 17.1 

TOT (% error) 4.33 5.72 13.7 4.14 13.1 

C-C 

3D EKM† 0.3782 0.6664 0.6772 0.8819 1.0345 

ZIGT (% error) 15.9 16.4 18.3 0.76 15.3 

TOT (% error) 11.4 11.2 17.5 0.76 14.1 

C-F 

3D EKM† 0.2328 0.4260 0.5942 0.7107 0.7784 

ZIGT (% error) 6.67 4.28 13.5 13.6 19.2 

TOT (% error) 4.77 4.28 7.97 9.36 13.6 

S-F 

3D EKM† 0.2179 0.3984 0.4320 0.5893 0.6970 

ZIGT (% error) 6.60 5.05 14.5 11.7 8.12 

TOT (% error) 4.69 3.95 9.21 7.86 12.5 

F-F 

3D EKM† 0.2073 0.2438 0.5138 0.5763 0.6120 

ZIGT (% error) 7.33 4.82 7.31 16.9 13.6 

TOT (% error) 5.22 3.30 5.28 11.9 9.10 

† Kumari and Behera (2017) 

 

the plates. It is to observe that ZIGT predicts quite accurate results for S-S and F-F boundary 

conditions, but for other type of boundary conditions it gives more error and the maximum 

(4.41%) being for C-C boundary case. It is observed that for sandwich plate ZIGT predicts 

superior results than TOT for all types of boundary conditions and plate categories. 

224



 

 

 

 

 

 

Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory 

 

 

Table 4 Effect of span-to-thickness ratio (S) on the fundamental natural frequencies of a three layer 

[90090] laminated composite plate: (material parameters: E1 /E2 = 40, E2 = E3 = 6.9 GPa, G12 = G13 = 

0.6E2, G23 = 0.5E2, υ13 = υ12 = 0.25, υ23 = 0.49) 

Theory S C-C S-C S-S F-C F-S F-F 

3D EKM† 

2 

5.331 5.201 5.192 3.481 3.072 2.715 

HSDT‡(% error) -0.48 -2.51 -0.77 3.50 4.79 7.30 

ZIGT (% error) 34.0 18.9 5.47 9.21 4.35 5.99 

TOT (% error) 26.7 14.5 3.30 6.94 2.73 3.73 

3D EKM† 

5 

11.426 10.679 10.246 5.81 4.401 3.911 

HSDT‡(% error) -0.05 -2.64 -0.88 1.19 2.36 3.03 

ZIGT (% error) 6.11 5.75 0.53 3.20 2.25 2.95 

TOT (% error) 6.11 4.57 0.19 2.59 1.66 2.21 

3D EKM† 

10 

19.66 17.108 14.702 7.135 4.876 4.241 

HSDT‡(% error) 0.15 -1.00 -0.29 0.37 0.69 1.72 

ZIGT (% error) 3.83 2.17 0.03 0.89 0.76 0.77 

TOT (% error) 3.14 1.81 0.00 0.76 0.59 0.57 

†Kumari and Behera (2017), ‡Khdeir and Librescu (1988) 

 
Table 5 Effect of inplane modulus ratio (E1/E2) on the fundamental natural frequency of an unsymmetrical 

four layer [900900] laminated composite plate (S=10) 

Theory E1/E2 S-S C-C C-S C-F 

3D EKM† 

40 

0.14501 0.18652 0.1649 0.10875 

ZIGT (% error) 1.83 5.30 3.58 1.98 

TOT (% error) 2.38 6.37 4.40 -6.32 

3D EKM† 

20 

0.11653 0.16088 0.13738 0.08638 

ZIGT (% error) 0.79 2.97 1.75 0.57 

TOT (% error) 1.10 3.72 2.26 0.86 

3D EKM† 

10 

0.09438 0.13627 0.11337 0.06869 

ZIGT (% error) 0.22 0.98 0.49 -0.41 

TOT (% error) 0.38 1.44 0.78 -0.26 

3D EKM† 

2 

0.06719 0.09641 0.07992 0.04628 

ZIGT (% error) -0.14 -1.94 -1.08 -3.41 

TOT (% error) -0.11 -1.85 -1.02 -3.38 

†Kumari and Behera (2017) 

 
The distributions of inplane displacement ,v normal stress ,y  and shear stress yz

 
for S-S 

boundary condition are illustrated in Fig. 2 for moderately thick (S=10) and thick (S=5) sandwich 

plates for the first mode (m=1). The ZIGT and TOT predictions are compared with the 3D exact 

and 3D EKM predictions and found that ZIGT has fairly accurate predictions while the TOT over 

predicts v for the thick plate and yz  for both thick and moderately thick plates. Fig. 3 displays 

the variation of displacement and stress variables for (a) C-C and (b) C-F boundary conditions. 

From the figures, it is observed that ZIGT and TOT predict erroneous results while the ZIGT 

predictions are superior to the TOT predictions. 
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Table 6 Lowest eight natural frequencies, of the 3D EKM with the % errors of ZIGT and TOT results for a 
three ply [90090] laminated plate for S-S and C-C boundary conditions 

BCs S Theory 
Mode sequences 

1 2 3 4 5 6 7 8 

S-S 

10 

3D EKM† 5.154 7.606 12.276 13.100 14.355 17.399 18.087 21.355 

FSDT‡(% error) 0.22 1.98 5.21 -0.39 0.14 2.24 7.82 -1.42 

ZIGT (% error) 0.07 1.50 3.94 0.36 0.64 2.03 5.72 0.58 

TOT (% error) 0.04 1.11 2.89 0.09 0.31 1.35 4.08 -0.22 

20 

3D EKM† 6.131 8.841 14.845 19.32 20.618 23.287 24.202 30.426 

FSDT‡(% error) 0.12 0.53 1.79 0.18 0.23 3.36 0.59 1.98 

ZIGT (% error) 0.01 0.41 1.46 0.03 0.07 2.69 0.35 1.50 

TOT (% error) 0.01 0.31 1.12 0.02 0.04 2.05 0.21 1.11 

C-C 

10 

3D EKM† 5.796 9.019 13.363 13.83 15.147 18.521 19.487 21.535 

FSDT‡(% error) 1.30 4.82 -0.17 7.58 1.27 3.82 8.95 -1.21 

ZIGT (% error) 0.97 3.91 0.51 6.14 1.53 3.42 7.36 -0.27 

TOT (% error) 0.74 3.05 0.21 4.77 1.02 2.52 5.66 -1.05 

20 

3D EKM† 6.867 11.04 18.001 19.578 21.675 26.23 26.827 33.205 

FSDT‡(% error) 0.33 1.87 3.68 0.21 0.58 1.75 5.34 3.44 

ZIGT (% error) 0.21 1.55 3.05 0.06 0.37 1.35 4.37 2.81 

TOT (% error) 0.16 1.22 2.41 0.04 0.27 1.04 3.43 2.81 

†Kumari and Behera (2017) and ‡Liew (1996) 

 
Table 7 The % errors of lowest five flexural natural frequencies of ZIGT and TOT with respect to 3D EKM 
for a square sandwich plate under five different boundary conditions for S=5, 10 and 20 

S Mode 

S-S C-C C-S C-F F-F 

3D 

EKM† 

ZIGT 

%error 

TOT 

%error 

3D 

EKM† 

ZIGT 

%error 

TOT 

%error 

3D 

EKM† 

ZIGT 

%error 

TOT 

%error 

3D 

EKM† 

ZIGT 

%error 

TOT 

%error 

3D 

EKM† 

ZIGT 

%error 

TOT 

%error 

5 

1 4.807 0.07 7.03 5.041 2.29 8.99 4.876 1.53 8.41 3.605 0.51 9.09 3.181 0.12 9.94 

2 7.921 0.09 -2.21 8.036 1.00 10.8 7.958 0.66 10.5 6.162 2.32 8.09 3.829 0.29 8.21 

3 8.367 0.14 5.77 8.397 4.41 9.53 8.388 2.20 7.59 7.232 0.26 7.10 6.997 0.29 10.7 

4 10.479 0.14 7.87 10.507 2.89 10.2 10.497 1.46 9.01 8.890 1.36 10.0 7.637 0.25 2.47 

5 11.505 0.13 3.57 11.564 0.59 3.04 11.525 0.41 3.39 10.278 1.01 5.88 7.972 0.51 5.90 

10 

1 7.677 0.04 4.36 8.821 1.30 6.14 8.201 0.82 5.46 5.597 0.25 5.39 4.951 0.14 4.69 

2 14.164 0.05 8.78 14.702 0.55 9.09 14.406 0.34 8.99 10.323 1.22 5.56 5.791 0.13 5.41 

3 15.078 0.08 4.66 15.469 2.25 6.91 15.296 1.18 5.81 13.005 0.55 6.66 12.728 0.07 8.98 

4 19.228 0.07 7.03 19.508 1.51 8.39 19.381 0.79 7.71 15.915 0.70 8.54 13.146 0.15 3.90 

5 21.437 0.07 5.06 21.726 0.31 3.67 21.567 0.21 4.43 18.388 1.34 5.82 13.486 0.12 2.86 

20 

1 9.849 0.02 1.73 13.453 0.58 3.33 11.569 0.30 2.50 7.009 0.19 2.18 6.193 0.01 0.68 

2 21.707 0.03 5.27 23.338 0.42 5.52 22.460 0.16 5.31 14.973 0.55 2.93 7.249 0.09 2.23 

3 23.314 0.04 2.68 26.275 1.05 4.64 24.875 0.63 3.79 20.240 0.15 3.59 17.551 0.04 1.73 

4 30.711 0.03 4.35 32.819 0.77 5.41 31.811 0.40 4.88 24.870 0.32 5.18 19.823 -1.01 4.59 

5 36.632 0.05 3.49 37.517 0.18 1.05 37.031 0.11 2.37 29.958 0.53 3.69 20.765 0.08 0.95 

†Kumari and Behera (2017) 
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Fig. 2 Distributions , yv  and yz  for the first mode of all round simply supported (S-S) square 

sandwich plate 

 

 
Fig. 3 Distributions ,

y
v  and yz

  for the first modes of square sandwich plate for C-C and C-F 

boundary conditions 
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6. Conclusions 
 

The assessment of zig-zag theory for the free vibration of a single layer isotropic, laminated 

composite and sandwich plates has been carried out for symmetric and un-symmetric cross-ply 

lay-ups, different plate thicknesses and various boundary conditions. 

• The 2D theories predict accurate frequencies for the simply supported case, but for other 

boundary conditions, 2D theories predict erroneous results even in the first mode frequency. The 

percentage error is observed maximum for C-C boundary condition for all plate configurations. 

The error in the ZIGT results for natural frequencies is large for thicker plates. 

• It is observed that TOT produces better natural frequencies than ZIGT for symmetric 

laminates, but for unsymmetrical laminated and sandwich plates, ZIGT predicts the frequency for 

different boundary conditions within 3% error with respect to 3D elasticity solution while TOT 

gives 10% error. 

• As the inplane elastic modulus ratio decreases, thereby making the plate material closer to 

isotropic condition, the frequency percentage errors of 2D theories with respect to the 3D EKM 

also decrease. 

• The comparison of displacement and stresses for sandwich plate shows that ZIGT predicts 

quite accurately than the TOT for S-S case, but for C-C and C-F cases both theories estimate 

highly erroneous results. The displacement profile predicted by TOT is far from the exact 

prediction. 

The natural frequencies tabulated in this paper will be handy for the research community to 

evaluate the accuracy of the different finite element models and 2D laminate theories. The present 

zig-zag theory can be recommended for dynamic analysis of composite and sandwich plates for its 

firmness, accuracy and computational efficiency. 
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and the non-zero elements of bK are 

1,8 2,7 4,10 5,12 6,11 10,9 7,81,   K K K K K K K m= = = = = = =  (A.4) 

where /m m a= . 

The non-zero elements from the contribution of dynamic terms of matrix Km with addition to 

the above 
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