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Abstract.  The present work proposes the thermo mechanically induced statistics of nonlinear transverse 

central deflection of elastically supported functionally graded (FG) plate subjected to static loadings with 

random system properties. The FG plate is supported on two parameters Pasternak foundation with Winkler 

cubic nonlinearity. The random system properties such as material properties of FG material, external 

loading and foundation parameters are assumed as uncorrelated random variables. The material properties 

are assumed as non-uniform temperature distribution with temperature dependent (TD) material properties. 

The basic formulation for static is based on higher order shear deformation theory (HSDT) with von-

Karman nonlinear strain kinematics through Newton-Raphson method. A second order perturbation 

technique (SOPT) and direct Monte Carlo simulation (MCS) are used to compute the nonlinear governing 

equation. The effects of load parameters, plate thickness ratios, aspect ratios, volume fraction, exponent, 

foundation parameters, and boundary conditions with random system properties are examined through 

parametric studies. The results of present approaches are compared with those results available in the 

literature and by employing direct Monte Carlo simulation (MCS). 
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1. Introduction 
 

The functionally graded materials have attracted much attention in the many engineering 

applications from last decade due to high temperature resistance and maintain structural integrity 

by gradation of composition along the thickness direction through the appropriate volume fraction 

change (Birman and Byrd 2007, Koizumi 1997, Suresh and Mortensen 1998). 

The FG materials are being increasingly used in many engineering sectors such as in aerospace 

for spacecraft antennas and thermal barrier coating, in nuclear for making a wall of fission 
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reactors, in biomedical for making artificial bones and teeth, in automobiles for engine inner parts 

of piston and cylinder and cutting tools, and other allied fields such as solar receiver systems, heat 

exchanger tubes, turbine blades etc. (Aboudi et al. 1994, Matsuzaki 1993). 

The FG structural components supported on elastic foundation are also being increasingly used 

in large transportation aircraft runways, launching pads of missiles and tops, suspension systems in 

automobiles, foundation of deep wells, ship and bridge structures parts etc. The exact modeling of 

elastic foundation is one of the areas of the interesting area of research. For design prospective, 

two parameters Pasternak elastic foundations with Winkler cubic nonlinearity is one of the most 

appropriate foundation models (Ying et al. 2008, Fallah et al. 2008).  

When a structure is subjected to temperature change, thermally induced compressive stresses 

are developed in the constraint edges due to mismatch thermal expansion coefficients. Such 

thermal stresses oppose the mechanical stresses and finally lower the stiffness. Ultimately it 

reduces the strength and stability of the plate. Hence, the effect of thermal loading on the structural 

performance is one of the essential parameters and plays a significant role in the structural 

integrity and stability of the structures (Sankar and Tzeng 2002, Shi-Rong et al. 2006).  

The study of transverse central deflection of FG materials plate resting on elastic foundation 

subjected to static and dynamic loadings is highly important for optimal and reliable performance 

of overall structures.            

The large number of random system parameters in terms of exact design specification and 

materials gradation is involved during manufacturing and fabrication of FG materials as compared 

to conventional isotropic and homogeneous materials. These random system parameters are 

inherent in nature and yield the material and geometrical uncertainties. The present of these types 

of system randomness may have effect on the structural performance and finally affects the 

reliability of final design.  

Aside from this, during application, the structures are constantly subjected to different types of 

mechanical loadings and hence it may be assumed as an independent random variable. Similarly, 

the modeling of foundation parameters by assuming as separate random system parameters to 

obtain the accurate response of supported elastic foundation is also a matter of concern in practice. 

Hence, the quantification of system randomness at various levels using stochastic approach is 

extremely important for reliable and safe design of the overall structure.  

Several literatures are available on the large deflection response of FG materials panels 

subjected to static thermo-mechanical loadings acting simultaneously or separately using various 

deterministic approaches. In this direction, several micromechanics models have been developed 

to calculate effective properties of macroscopically homogeneous composite materials. The FGMs 

plates are usually used in high temperature in which significant variations in physical properties of 

the constituent materials occur as temperature changes (see Reddy and Chin 1998), and are 

expected to failure from large amplitude deflection and/or excessive stresses induced by thermal or 

mechanical loads. It is therefore important to account for the nonlinearity in deformation subjected 

to temperature dependent material properties. A considerable amount of literatures are available in 

this direction, namely, Shen and Wang (2010) evaluated the nonlinear transverse central deflection 

response of FGM plate supported by an elastic foundation in thermal environment using HSDT 

through semi-analytical method. They presented the finite element model based on third-order 

shear deformation theory for static and dynamic analysis of the FGM plates. Ma and Wang (2003) 

investigated the axisymmetric large deflection, bending and thermal post-buckling of a FGMs 

circular plate under mechanical, thermal and combined thermal-mechanical loadings, based on the 

classical nonlinear of von Karman plate theory. Yang and Shen (2003) presented nonlinear 
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bending response of shear deformable functionally graded plate subjected to thermo-mechanical 

loads, based on Reddy’s higher order shear deformation plate theory using the semi analytical 

method. Ferreira et al. (2005) presented a static analysis of functionally graded material plate 

using third-order shear deformation theory based on mesh less methods. Ghannadpour and Alinia 

(2006) presented a large deflection analysis of rectangular functionally graded plates under 

pressure loads using the Von-Karman theory with potential energy. Na and Kim (2006) presented 

nonlinear bending of clamped rectangular FGM plate subjected to a transverse uniform pressure 

and thermal loads using a 3-D finite element method, in this study the thermal loads were assumed 

as uniform, linear and sinusoidal temperature rises across the thickness direction. Yang et al. 

(2005) presented the bending response of shear deformable FG materials plate with system 

randomness using first-order shear deformation plate theory (FSDT) combined with FOPT. 

Khabbaz et al. (2009) presented the energy concept with the first and third-order shear 

deformation theories (FSDT and TSDT) for nonlinear analysis of FGM plates under pressure 

loads. Alinia and Ghannadpour (2009) studied the nonlinear analysis of pressure loaded FGM 

plates based on classical plate theory. Shen and Wang (2010) presented the nonlinear bending of 

simply supported FGM plates subjected to combined thermo-mechanical loadings resting on 

elastic foundations using temperature dependent material properties. Singha et al. (2011) presented 

the finite element analysis of functionally graded plates to evaluate the transverse central 

deflection under transverse distributed load using FSDT considering the exact neutral surface 

position through Newton-Raphson iteration method. Praveen and Reddy (1998) evaluated the 

transverse central of functionally graded ceramic, metal plates in thermal environment using finite 

element method combined with first order shear deformation theory using von-Karman 

nonlinearity. Huang and Shen (2004) evaluated the nonlinear transverse central deflection and free 

vibration response of functionally graded plate subjected to thermo mechanical loadings using 

HSDT with von-Karman nonlinearity through semi analytical approach. Wang and Shen (2013) 

examined the nonlinear dynamic response of sandwich FGM plate resting elastic foundation in 

thermal environment using HSDT through semi-analytical method. Shen (2007) presented the 

nonlinear thermal bending response of simply supported, shear deformable FGM plates subjected 

to combined action of thermal and electrical loading due to heat conduction based on higher order 

shear deformation theory. Zhang (2014) evaluated the transverse central deflection response of FG 

materials plate resting on two-parameter elastic foundations using on physical neutral surfaces and 

high-order shear deformation theory. 

All the above mentioned literatures are based on deterministic study which gives only mean 

structural response and unaccounted the effect of random system properties on the structural 

performance for higher reliability and safety. 

The studies related to the stochastic response of FG and other material structures subjected 

static loading are very limited due to complexities involved in quantification of the random system 

properties. In this direction, Yang et al. (2005) presented the elastic buckling response of shear 

deformable FG materials plate with uncertain system randomness using FSDT combined with 

FOPT. Onkar et al. (200, 2006) presented the nonlinear bending and post buckling of composite 

laminates with random material properties under random loading based on FOPT. Singh et al. 

(2001, 2003, 2008) evaluated the vibration and bending of composite laminate plates supported 

with or without elastic foundation using C
0
 finite element method based on HSDT in conjunction 

with FOPT. Lal et al. (2007, 2009) presented the effect of random material properties on nonlinear 

free vibration and buckling response of laminated composite plates supported with and without 

elastic foundation in the thermal environment using HSDT based C
0
 nonlinear FEM based on the 
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direct iterative method in conjunction with FOPT. Shaker et al. (2008) evaluated the free vibration 

of functionally graded plates using stochastic finite element method (SFEM) combined with 

HSDT through first and second order reliability method. Jagtap et al. (2012) evaluated the 

stochastic nonlinear bending response of elastically supported FGM plate with system randomness 

in thermal environment using direct iterative based nonlinear FEM in conjunction with first order 

perturbation theory (FOPT). Pandit et al. (2010) presented the stochastic finite element method for 

free vibration of core sandwich plate using with mean centered FOPT through higher-order zigzag 

theory with random material properties. A C
0
 finite element method combined MCS with 

hypercube sampling technique using third order shear deformation theory are used to handle the 

material and structural uncertainties by Chandrashekhar and Ganguli (2009, 2010); Murugan et al. 

(2008). Liu et al. (1986) evaluated the statistics of deflection response of spring mass system using 

a stochastic finite element method based on perturbation and MCS techniques. Chang and Chang 

(1994) investigated the statistical dynamic responses of a nonuniform beam by using the finite 

element method in conjunction with perturbation technique and Monte Carlo simulation 

considering uncertain Young’s modulus of elasticity. Kitipornchai et al. (2006) presented a 

stochastic model to obtain second order statistics of fundamental frequency of FG materials 

laminates in thermal environments using first-order shear deformation plate theory (FSDT) in 

conjunction with FOPT. Ibrahim et al. (2007) evaluated random transverse deflection and thermal 

bucking response in terms of the mean and variance of a FG plate subjected to combined thermal 

and acoustic loads with random acoustic pressure using a finite element method based on the thin 

theory through Newton-Raphson method via Newmark direct time integration. Onkar and Yadav 

(2005) proposed stochastic FOPT to examine the mean and variance of nonlinear transverse 

central deflection response of laminated composite plate with random material properties under 

random external loading using Kirchoff-Love plate theory with von-Karman nonlinearity. Singh 

and Lal (2010) proposed similar FOPT based stochastic model combined with a conventional 

finite element method (FEM) to obtain the mean and coefficient of variance of post buckling and 

nonlinear free vibration analysis of laminated composite plate resting on two parameters elastic 

foundation with Winkler cubic nonlinearity through HSDT. Lal et al. (2012a, 2012b, 2013) 

evaluated the mean and coefficient of variance (COV) of initial and post buckling analysis of 

laminated composite and functionally graded plates subjected to thermo-mechanical loadings 

using C0 nonlinear FEM based on HSDT combined with FOPT. Jagtap et al. (2011, 2013) 

evaluated the second order statistics of nonlinear free vibration and post buckling analysis of FGM 

shell panels using HSDT combined with direct iterative based nonlinear FEM combined with 

FOPT. Shegokar and Lal (2013a, 2014) proposed a stochastic FEM model based on FOPT and 

MCS to evaluate mean and COV of thermo-electro-mechanically induced buckling and vibration 

response of the FGM beam with random system properties using HSDT. Talha and Singh (2014) 

proposed stochastic FEM based on FOPT to obtain mean and COV of post buckling response of 

FGM plate with random material properties in thermal environment using HSDT. Kumar et al. 

(2014) proposed the stochastic FEM based on FOPT to obtain the hygro-thermo-mechanically 

induced nonlinear transverse central deflection response of laminated composite plate supported 

by an elastic foundation with random system properties using HSDT with von-Karman 

nonlinearity through micromechanics approach. Lal et al. (2015) evaluated the thermally induced 

post buckling response of piezoelectric laminated composite plate resting on elastic foundation 

with random system properties using micromechanical approach using C
0
 finite element methods 

combined with second order perturbation method.   

It is accomplished from the above mentioned literatures that the studies of thermo mechanically  
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Fig. 1 Geometry of FGM plate resting on elastic foundation 

 

 

induced nonlinear bending analysis of elastically supported FGM plates subjected to static 

transverse uniformly distributed mechanical loadings in thermal environment involving 

randomness in random system properties are rarely available. For the optimum performance and 

accurate prediction of response it is obligatory to understand the thermo mechanically induced 

transverse central deflection response through stochastically. The main objective of this paper is to 

evaluate statistics in terms of mean and coefficient of variance (COV) of thermo mechanically 

induced nonlinear transverse central deflection response of FG materials plate supported by an 

elastic foundation with random system parameters. 

 

 

2. Mathematical formulations 
 

Consider a rectangular FGM plate consists of metal and ceramic at the top and bottom layer 

having length a, width b, and total thickness h, defined in (x, y, z) system with x- and -y axes 

located the middle plane and its origin placed at the corner of the plate. The plate is assumed to be 

attached to the elastic foundation excluding any separation takes place in the process of 

deformation as shown  in Fig. 1. The interaction between the plate and the supporting foundation 

follows the two parameter model (Pasternak-type) with Winkler cubic nonlinearity as (Shen et al. 

2010) 

3 2

1 3 2p K w K w K w     (1) 

Where p is the foundation reaction per unit area, and 
2
=∂,

2
x2+∂,

2
y2 is second order Laplace 

differential operator. The parameters K1, K2 and K3 are linear normal, shear and nonlinear normal 

spring stiffness foundations, respectively. This model is simply known as Winkler type when K2=0 

(Lal et al. 2007). The symbol comma (,x) denotes as partial differential with respect to x.    

The properties of the FGM plate are assumed to vary through the thickness of the plate only, 

such that the top surface z=h/2 is ceramic-rich and the bottom surface z=-h/2 is metal reach as 

shown in Figs. 2(a)-(d). The effective mechanical and thermal properties of the FGMs plate of an 

arbitrary point within the plate domain are expressed as (Jagtap et al. 2012). 
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Fig. 2 Variation of (a) Young’s modulus model, (b) Poisson’s ratio, (c) Density and (d) Thermal expansion 

coefficient of SUS304-Si3N4 FGM beam along the thickness for various volume fraction index 
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(2) 

Where, t and b represent to the ceramic and metal constituents, respectively. With E, α, ρ and k 

are the effective young modulus, thermal expansion coefficient, density and thermal conductivity 

respectively. The elastic material properties vary through the plate thickness according to the 

volume fractions of the constituents. Power-law distribution is commonly used to describe the 

variation of material properties, which is expressed as (Jagtap et al. 2012, Shen 2009),  

2
( ) ( ) ,

2

n

c m m

z h
P z P P P

h

 
   

   
(3a) 

  0.5 , / 2 / 2, 0

n

C

z
V z h z h n

h

 
       
   

(3b) 
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Where P denotes the effective material property, Pm and Pc represents the properties of the 

metal and ceramic, respectively, Vc is the volume fraction of the ceramic and n is the volume 

fraction exponent and is always positive. The effective material properties of the plate, including 

Young’s modulus E, density ρ vary according to Eq. (2) and ν is assumed to be constant due to 

weakly dependent on temperature change. 
 

2.1 Displacement field model  
 

In the present analysis, the assumed displacement field based on Reddy’s HSDT having C
1
 

continuity by the satisfaction of conditions that the transverse shear stresses vanish at the top and 

bottom of the plate and nonzero elsewhere is modified by C
0
 continuity by considering derivatives 

of the out-of-plane displacements as separate degree of freedom (Shaker et al. 2008, Jagtap et al. 

2012, William et al. 1992, Singh and Lal 2010, Lal et al. 2013, Lal et al. 2012a, Shankara and 

Iyengar 1996). The modified displacement based on C
0
 continuity field, along the X, Y, and Z 

directions for an arbitrary plate is now written as (Singh et al. 2001). 

1 2

1 2

;

;

( ) ( )

( ) ( )

;

x

y

x

y

u

v

w

u f z f z

v f z f z

w

 

 

  

  

  

(4) 

Where u , v , and w denote the displacements of a point along the (x, y, z) coordinates, u, v, and 

w are corresponding displacements of a point on the mid plane. ψx and ψy are the rotations of 

normal to the mid plane about the y-axis and x-axis respectively, 

with x w x    and y w y    . The parameter f1(z)
 

and f2(z)
 

are defined as
 
 

   3 3

1 1 2 2 4 1 2 2 2

4
; with 1;

3
f z C z C z f z C z C C C

h
        

The displacement vector for the modified C
0
 continuous model is denoted as 

 
T

y x y xu v w       
 

(5) 

 

2.2. Strain displacement relations 
 

For the structures considered here, the relevant total strain vector consisting of strains in terms 

of mid-plane deformation, rotation of normal and higher order terms associated with the 

displacement for FGM including thermal strain is expressed as (Shegokar and Lal 2013a, 2013b)  

       l nl t       (6) 

Where l ,  nl and t are the linear and nonlinear strain vectors, thermal strain vector, 

respectively. 

Using Eq. (6) the linear strain vector can be obtained using linear strain displacement relations 

(Singh et al. 2008). Assuming that the strains are much smaller than the rotations (in the von-

Karman sense), one can obtain nonlinear strain vector  nl as (Lal et al. 2007). 

  
1

{ }
2

nl nlA   (7) 
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Where

,
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w

A w w
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 
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 
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 
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 and     
,

,

{ } ,
x

y

w

w


  
  
    

(7a) 

The thermal strain vector t as given in Eq. (6) is represented as 

 

1

2

12

0

0

x

y

t xy

yz

zx

T

   
   
      

     
   
   
     

 

 

  





 (8) 

Where α1, α2 and α12 are coefficients of thermal expansion along the x, y, and x-y directions, 

respectively. These parameters can be obtained from the thermal coefficients in the longitudinal 

(αl) and transverse (αt) directions of the ceramic and metal using transformation matrix and ΔT is 

the uniform and non-uniform temperature change. For the transversely non-uniform temperature 

rise, the temperature field, along the thickness should be determined by solving the boundary value 

problem of thermal conduction, given by (Shegokar and Lal 2013). 

d d 0 2 2
d d

2 2

Tk z T h z h
z z

T h T T h Tt b

 
 
 
 

   

  

( , ) ,( )

( ) , ( )
 (9) 

The temperature field for non uniform temperature change is expressed as 

0( )T T z T    (9a) 

Where, T0 is initial temperature and T(z) is expressed as (Shen 2009, Jagtap et al. 2011, 

Niranjan and Lal 2013) 

( ) ( ) ( )b t bT z T T T z    (9b) 

Where, T(z) is the temperature distribution along z direction, t and b are referred as top and 

bottom surface η(z) is the parameters defined as (Jagtap et al. 2011) 

1 2 1 3 12 3

2 3

4 1 5 14 5

4 5
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( 1) (2 1) (3 1)1
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0.5 0.5
(4 1) (5 1)

n n n

tb tb tb

b b b

n n

tb tb

b b

k k kz z z z

h n k h h hn k n k

c k kz z

h hn k n k
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 

        
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 
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(10) 

Where 

2 3 4 5

2 3 4 5
1

( 1) (2 1) (3 1) (4 1) (5 1)

tb tb tb tb tb

b b b b b

k k k k k
C

n k n k n k n k n k
     

    
 

Here k, z, n indicate the thermal conductivity, distance from central axis and volume fraction, 
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respectively with ktb=kt−kb.  
 

2.3 Constitutive relations 
 

The constitutive relationship between stress and strain vectors in the plane stress state for an 

isotropic layer accounting thermal effect can be written as (Lal et al. 2009) 

   ijQ    
 (11) 

Where ijQ ,  and    are transformed stiffness matrix, stress and strain vectors of the 

isotropic lamina, respectively. For FGM material the elastic constant (Qij) are defined as 

11 22 12 44 55 662 2

( , ) ( , ) ( , )
, ,

2(1 )1 1

E z T E z T E z T
Q Q Q Q Q Q



 
     

 
 (12) 

 

2.4 Strain energy of the plate 
 

The strain energy (1) of the FG material plates considering linear and nonlinear strain can be 

expressed as 

   
T

1 l nl
A

1
dA

2
      (13) 

Substituting Eq. (6)-(7a) in Eq. (13) can be written as 

          

              

1 3

4 5

1 1

2 2

1 1

2 2

   

   

  

 

 

 

TT

l l l
A A

TT T T

l
A A

D dA D A dA

A D dA A D A dA

 (14) 

Where (D), (D3), (D4) and (D5) are the FG material stiffness matrices as given in Appendix 

(A.1) and 

   0 0 0 0 0 0 2 2 2 0 0 2 2

1 2 6 1 2 6 1 2 6 4 5 4 5      k k k k k k k k
 

(14a) 

 

2.5 Strain energy due to foundation 
 

Strain energy due to elastic foundation having a shear deformable layer with Winkler cubic 

nonlinearity is expressed as (Lal et al. 2012b) 

2

1

2 A
pwdA    (15) 

Substituting value of p from Eq. (1) into Eq. (15), and applying variation principle the strain 

energy due to foundation can be written as (Shen 

   
2 22 4

2 1 3 2

1 1
, ,

2 2
x x

A
K w K w K w w dA
         

  (16) 
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Eq. (16) can be written in matrix form as 

2

3
1

2 2

2

1
0 0

0 0 2
1

, , , ,0 0 0 0 0
2

, , , ,0 0 0 0 0

T T

x x x x
A A

y y y y

K w
w w w wK

w w w wK dA dA

w w w wK

 
         
         

           
                  

 

 
 

(16a) 

 

2.6 Potential energy due to thermal stresses  
 

The potential energy (2) storage by thermal load (uniform and non-uniform change in 

temperature) across the thickness is written as 

      
22

3

1
, , 2 , ,

2

, ,1

, ,2

    
  

        
     

        





x x y y xy x y
A

T

x x xy x

A
y xy y y

N w N w N w w dA

w N N w
dA

w N N w

 (17) 

Where, Nx, Ny and Nxy are pre-buckling thermal stresses acting along x, y and shear directions, 

respectively. 

 

2.7 External work done due to transverse mechanical load 
 

The potential due to applied external mechanical loading q(x,y) is given by (Huang and Shen 

2004, Wanga and Shen 2013) 

 4 ,      q
A

W q x y w dA
 

(18) 

Where, q(x, y) is the intensity of distributed transverse static load corresponding to each degree 

of freedom (DOF) which is defined as 

 
4

4
, mQE h

q x y
b


 

(19) 

Where Q and Em are represented as load parameter and Young’s modulus in transverse 

direction, respectively. 

 

 

3. Finite element model 
 

3.1 Strain energy of the plate  
 
In the present study, a C

0
 nine-noded isoparametric finite element with 7 DOFs per node is 

employed. In this type of element, the displacement vector and the element geometry are 

expressed as 

   
1

;
NN

i i
i

q q


  (20) 
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And     

1

;
NN

i i

i

xx 


  
1

NN

i i

i

y y


  (21) 

Where υi the interpolation function for the i
th 

node, {q} is the vector of unknown displacements 

for the i
th
 node, NN is the number of nodes per element and xi  and  yi  are Cartesian Coordinate of 

the  i
th
  node. 

The linear mid plane strain vector as given in Eq. (7) can be expressed in terms of mid plane 

displacement field and then the energy is computed for each element and then summed over all the 

elements to get the total strain energy. Following this, and using Eq. (21), Eq. (14) can be written 

as 

 
1 1

1

NE
e

e

    (22) 

Where, NE is the number of elements and Π
(e)

 is the elemental total potential energy. Following 

the assembly procedure, Eq. (22) can be further written as 

1          
1

2

T T T

l nlq K K q q q F      (23) 

Where 

       1 2 3

1 1

2 2
nl nl nl nlK q K q K q K q                  

Where [Kl], and [Knl(q)] are the global linear and nonlinear stiffness matrices defined in 

Appendix (A.2). The parameters {q} and {F
T
} are the global displacement and thermal load 

vectors and defined in the Appendix (A.3). 

 

3.2 Foundation analysis 
 

Similarly, using finite element model Eqs. (20)-(21), Eq. (16) after the assembly procedure can 

be written as 

      
          ( )

2 3

1

NE
ee ee

fl fnl fl fnl

e

q K K q q q K K q q


              (24) 

Where (Kfl) and (Kfnl(q)) is global linear and nonlinear foundation stiffness matrices, 

respectively and defined in Appendix (A.4). 

 

3.3 Thermal buckling analysis 
 

Using finite element model Eq. (20), Eq. (17) after the assembly procedure can be written as 

 
3 2

1

NE
e

e

      
1

2

T

gq K q      (25) 

Where λ and (Kg) are defined as the critical thermal buckling load parameter and the global 

geometric stiffness matrix defined in Appendix (A.5), respectively. 
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3.4 Work done due to external transverse load 
 

Using finite element model Eq. (21), Eq. (18) may be written as 

 
44

1

NE
e

e

  
 

Where 

   
 

 
 

 4 e

e T ee

M
A

q P dA   ; 
(26) 

With 

 
 

 
 

0 0 0 0 0 0
e T e

MP q  (27) 

Adopting Gauss quadrature integration numerical rule, the element stiffness and geometric 

stiffness matrices, load vectors,  respectively, can be obtained by transforming expression in x, y 

coordinate system to natural coordinate system (, ). 
 

 

4. Governing equation 
 

The governing equation can be derived using Variational principle, which is a generalization of 

the principle of virtual displacement (Zhang et al. 1996). For the bending analysis, the 

minimization of the first variation of total potential energy Π (Π1+Π2+Π3+ Π4) with respect to 

displacement vector is given by (Reddy and Chin 1998). 

δ (Π1+Π2+Π3+Π4)= 0 (28) 

By substituting Eqs. (23), (26) in Eq. (28) and after simplification once obtains as (Shen and 

Wang 2010, Yang and Shen 2003, Singha et al. 2011) 

     ,K q q F   
 (29) 

With      l nl fl fnlK K K q K K q      and      M TF P P  

In the given Eq. (29), the stiffness matrix [K], displacement vector {q} and force vector {F} are 

random in nature, being dependent on the system properties. In deterministic environment, the 

solution of Eq. (29) can be obtained using conventional procedure such as iterative, incremental, 

and Newton Rapson methods, etc. However, in random environment, it is not possible to obtain 

the solution using above mentioned numerical methods. Further analysis is required to obtain the 

complete solution of Eq. (29). 

For this purpose novel probabilistic procedure based on C
0
 nonlinear finite element method 

using HSDT with von Karman nonlinearity combined with SOPT and MCS through Newton-

Raphson method are proposed to obtain the mean and (COV) of transverse central deflection of 

elastically supported FGM plate in the thermal environment. 
 

 

5. Solution approach 
 

In this paper, the deterministic solution of Eq. (29) is solved using C
0
 nonlinear FEM combined 
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with Newton-Raphson approach using SOPT and MCS methods to evaluate the nonlinear 

transverse central deflection of FGM elastically supported plate which is described below. 

 
5.1 A newton-raphson method for the solution of nonlinear governing equation 

 
After assembling the element stiffness matrices and force vectors, a new system of nonlinear 

algebraic equations from Eq. (29) can be written as (William et al. 1992, Reddy and Chin 1998) 

     K q q F   
 (30) 

This nonlinear system should be linearized to be solved and to get the nodal displacements
 
{q}. 

The Newton-Raphson iterative linearization method is used in this study for evaluation of 

nonlinear analysis. 

In the Newton Raphson procedure, the linearized element Eq. (30) is written in the following 

form as  

         
1

( 1) ( 1) ( 1)i i i i
q q T q R q


    

 
 (31) 

Where the residual 

        
( 1) ( 1)i i

R q K q F
 

   (32) 

The tangent stiffness matrix  
( 1)i

T q
 

 
element is calculated using the definition given as 

 
   
 

( 1)

( 1)

i

i
R q

T q
q




 
   

   
 

 (33) 

The next step is to divide the load into small increments as discussed below.  

The force vector in Eq. (32) can be written as 

   
1

N

i

i

F F


   (34) 

Where {Fi}are the incremental forces applied for i
th
 iteration. 

The displacement vector {q} for the first step and second step can be written as  

      0 1 1K q q F   
 

 (35) 

        1 2 1 2K q q F F     
   

(36) 

This process is continuing until {F} is converged. 

In both methods, direct and Newton-Raphson, the first iteration can be calculated using linear 

stiffness matrix, i.e., assume  
( 1)i

q


=0, and calculate  
i

q using Eq. (31) or Eq. (32).Then calculate 

the residual and repeat iteration process till reach a sufficient residual. At the exact solution, the 

residual equals zero.  

 
5.2 Solution approach of stochastic finite element method 
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In the present paper, two methodologies such as SOPT and direct MCS are adopted to quantify 

the statistics of structural response. The SOPT is based on a Taylor series expansion to formulate 

the linear relationship between some characteristics of the random response and random structural 

parameters on the basis of SOPT. The applicability of this technique is limited. It is because of it 

depends on low order polynomial i.e., where the coefficients of variations (COV) of input random 

variables are small. As the number of input variables becomes large, this method becomes 

inaccurate and inefficient (Zhang el al. 1996, Halder and Mahadevan 2000, Kitipornchai et al. 

2006, Lal et al. 2015). The detail explanation of this method is given by second order perturbation 

method (SOPT) as discussed in next Section 5.3. 

The MCS is adopted to quantify the structural response randomness on the basis of direct use of 

computer and simulate the experiments by generating of random numbers of the random system 

properties. In such simulated experiments, a set of random numbers of random system parameters 

is generated first to present the statistical uncertainties in the random system parameters. These 

random numbers are substituted into the response equation to obtain again a set of random number 

which reflects the uncertainties in structural response. A sufficient set of random number is 

generated for the mean and standard deviation and coefficient of variance of response. However, 

MCS is computationally expensive and sometimes suffers from prohibitive computational 

inefficiency. Therefore, MCS is used in limited cases. For the evaluation of MCS results, 5,000 

random numbers sample based on convergence study is used to simulate the results.  

 

5.3 Second order perturbation technique for stochastic response 
 

For the present stochastic static analysis problem, it is assumed that the randomness in the input 

system parameters is small. The governing Eq. (29) can be written in the most general form as 

 *[ ]{ }K q F    (37) 

Wher [K
*
], {q

*
} and

 
{F

*
}are represented as the random stiffness matrix, random displacement 

vector and random force vector, respectively. 

The operating random system variables in Eq. (37) can be expanded using Taylor series about 

the mean values of random variables as up to second order without loss of generality (Halder and 

Mahadevan 2000) 

 

     

     

* * *

0

1 1 1

* * *

0

1 1 1

* * *

0

1 1 1

1

2

1

2

1

2

N N N
I II

i i ij i j

i i j

N N N
I II

i i ij i j

i i j

N N N
I II

i i ij i j

i i j

K K K K

F F F F

q q q q

  

  

  

  

  

  

            

     

     

 

 

 

 
(38) 

Where
 
[K0], {F0}and{q0} are the mean values of respective tensors.. 

The symbol  ( )i
*I

 and  ( )i
*II

 represent the first and second order derivatives evaluated at α=0, 

e.g., 

2
*

0

II

ij

i j

K
K


 





 

*

0

I

i

i

K
K










 (39) 
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Where αi, and αj are the random system parameters.  

Substituting Eq. (38) in Eq. (37) and collecting the similar order of terms, following equations 

are obtained  

   1

0 0 0q K F     (40) 

    1 * *

0 0

I I I

i i iq K F K q         
(41) 

        1 * * * * * *

0 0

II II I I I I II

ij ij i j j i ijq K F K q K q K q                   
(42) 

Obviously, Zeroth order Eq. (40) is the deterministic and gives the mean response. The first 

order Eq. (41) and second order Eq. (42) on the other hand represents its random counterpart and 

solution of this equation provides the statistics of the nonlinear bending response, which can be 

solved using the probabilistic methods like perturbation technique, Monte Carlo simulation, 

Newman’s expansion technique etc. 

From these mean and covariance matrix of deflection {q} can be obtained as as (Halder and 

Mahadevan 2000, Jagtap et al. 2012, Kumar et al. 2014). 

   0

1 1

1
,

2

N N
II

ij i j

i j

q q q Cov  
 

      (43) 

      
1 1

, ,
N N T

I I

i j i j

i j

Cov q q q q Cov  
 

   
 

(44) 

After Cov[αi,αj] is substituted in terms of correlation coefficients ρij 
in Eq. (45), the final 

expression for Cov[q,q] is obtained as (Jagtap et al. 2012, Kumar et al. 2014, Singh and Lal 2010). 

   
 

 
 

1 1
0 0

,
i j

T
N N

ij

i j j j

qq
Cov q q  

 

  
  

 

 
      
 

  (45) 

Where  
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 
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 

 


 

 
 
      
 
 

 

Where [σα], [ρij] and m are the standard deviation (SD) of input random variables, the 

correlation coefficient matrix and number of random variables, respectively. In the present 

analysis, the uncorrelad Gaussian random variables are taken into consideration. Therefore, 

covariance is equal to the variance. 

The variance of the deflection of random variables bi (i=1, 2…,R) and correlation coefficients 

can beexpressed as (Halder and Mahadevan 2000, Shegokar and Lal 2014). 

var 
 

   
 

1 1

N N

ij

i j i i

T

R R

q q
q

b b
   

 

     
                

  (46) 

It is to be noted that to estimate the second order variance, the information on the third and 
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fourth order moments of the input random variables must be available. However, in most cases, 

this information is not available. Therefore, the use of second order mean and the first order 

variance is considered adequate for most practice engineering applications (Halder and Mahadevan 

2000). The square root of variance is known as standard deviation (SD). The coefficient of 

variation (COV) of deflection is evaluated by the ratio of SD to expected mean of the deflection.In 

the present study, the expected mean of deflection and corresponding variance can be evaluated by 

Eq. (43). 
 

 

6. Results and discussion 
 

A Stochastic based SOPT and MCS are used to evaluate the statistics of nonlinear transverse 

central deflection of elastically supported FG material plate through Newton-Raphson method. A 

nine nod-ed Lagrangian isoparametric element with 63 degrees of freedom per element in the 

present HSDT model has been used throughout the study. In the present study, Coefficient of 

variance (COV) of random system parameters are taken as 0.1 i.e., 10% from their mean values. 

However, higher COV would be valid for higher dispersion in random system parameters, keeping 

in mind the limitation of the perturbation technique (Halder and Mahadevan 2000, Zhang et al. 

1996). 

The basic random system input variables (bi) such as Ec, Em, υc, υm, n, Q, αc, αm, kc, km, k1, k2 

and k3 are sequenced and defined as 

1 2 3 4 5 6 7 8 9 10 11 1 12 2 13 3, , , , , , , , , , , andc c m m c m c mb E b b E b b n b Q b b b k b k b k b k b k                 

Where Ec, Em, υc, υm, n, Q, αc, αm, kc and are km Young’s modulus, Poisson’s ratios, volume 

fraction, exponent, thermal expansion coefficient, thermal conductivity of ceramic and metal, 

respectively and applied uniformly distributed transverse load. The terms k1, k2 and k3 are known 

as dimensionless, linear spring, shear and nonlinear spring foundation parameters, respectively. 

In the present study, three combinations of support boundary conditions, namely, simply 

supported (SSSS), clamped (CCCC) and two opposite edges are clamped and simply supported 

(CSCS) are taken into account. The constraints of these boundary conditions are written as: 

All edges simply supported (SSSS) 

0, 0, ; 0 0,y y x xv w at x a u w at y b             ; 

All edges clamped (CCCC) 

0, 0, 0, ;x y x yu v w at x a and y b             

Two opposite edges clamped and other two simply supported (CSCS) 

0, 0 0;x y x yu v w at x and y             

0, 0,y y x xv w at x a u w at y b             ;
 

In this study, the following dimensionless mean non lineartransverse centraldeflection (W0) and 

foundation parameters (k1, k2 and k3) are defined as (unless otherwise stated)  

0

O

W
W

h
   , 4 3 2 3 4

1 1 2 2 3 3;   ;m m mk K a E h k K a E h k K a E h    
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Table 1 The material properties of ZrO2/Ti-6Al-4V FGMs with TD material properties Reddy and Chin CD 

(1998) 

Types of material Properties P0 P-1 P1 P2 P3 

ZrO2 
E(Pa) 244.27e+9 0 -1.371e-3 1.214e-6 -3.681e-6 

α (1/K) 12.766e-6 0 -1.491e-3 1.006e-5 -6.778e-11 

Ti-6Al-4V 
E(Pa) 122.56e+9 0 -4.586e-4 0 0 

α (1/K) 7.5788e-6 0 6.638e-4 3.147e-6 0 

 
Table 2 Comparison and convergences study of the transverse central deflection of simply supported FGMs 

(Al/ZrO2) square plate for various volume fraction index with different mesh size having b/h=5 

Mesh size 
Volume fraction index (n) 

Ceramic 0.5 1 2 Metal 

Present (2×2) 0.0039 0.0047 0.0053 0.0061 0.0087 

Present (3×3) 0.0238 0.0293 0.0329 0.0371 0.0512 

Present (4×4) 0.0212 0.0262 0.0294 0.0331 0.0458 

Present (5×5) 0.0218 0.0252 0.0278 0.0326 0.0433 

Present (6×6) 0.0224 0.0261 0.0306 0.0346 0.0448 

Ferreira et al. (2005) 0.0205 0.0262 0.0294 0.0323 0.0443 

Percentage Difference† 3.3018 0.0 0.0 2.4767 3.2751 

†Percentage Difference is evaluated in between Present (4×4) and Ferreira et al. (2005)  
 

 

Where
0W is the dimensional nonlinear transverse central deflection of FGM plate. 

The material properties are position dependent and can be expressed as (Shen and Wang 2010) 

( ) ( )t t b bP PV z PV z   

Where Pt and Pb represent the temperature dependent properties (TD) of the top and bottom 

faces of the plate, respectively and can be expressed as  

1 2 3

0 1 1 2 3( 1 )P P P T P T PT PT

      

The material properties such as P0, P-1, P1, P2, P3, and T considered for present analysis is 

shown in Table 1. The value of temperature T is taken as 300K for the whole of the analysis unless 

otherwise stated. 

For the temperature independent material properties (TID) the value of P-1, P1, P2,and P3, are 

equal to zero. It is noted that, the results computed in this paper is for ZrO2/Ti-6Al-4V material 

plate unless otherwise stated. The temperature dependent (TD) material property of functionally 

graded materials is given in Table 1. 
 

6.1 Comparative study for statistics of nonlinear transverse central deflection  
 

The accuracy and convergence of present deterministic approach for transverse central 

deflection of simply supported FGMs (Al/ZrO2) square plate subjected to a uniform transverse 

load is shown in Table 2 with numerical results of (Ferreira et al. 2005). Based on established 

approach and analyses of the foregoing sections, it is acknowledged that (4×4) mesh is founded  
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Table 3 Effect of individual random system properties and elastic foundations on the expected mean and 

COV, {bi(i=1 to 13)=0.1} of transverse central deflection of FGM square simply supported plates resting on 

elastic foundation in thermal environment, for b/h=55, Q=50, T=100K, and n=1 

 FOPT SOPT MCS 

FP 

bi 

k1=100, 

k2=0, 

k3=0 

k1=100, 

k2=10, 

k3=0 

k1=100, 

k2=10, 

k3=100 

k1=100, 

k2=0, 

k3=0 

k1=100, 

k2=10, 

k3=0 

k1=100, 

k2=10, 

k3=100 

k1=100, 

k2=0, 

k3=0 

k1=100, 

k2=10, 

k3=0 

k1=100, 

k2=10, 

k3=100 

b1=Ec 
0.1243 

(1.864) 

0.0501 

(1.289) 

0.0468 

(1.249) 

0.1225 

(1.864) 

0.0500 

(1.289) 

0.0467 

(1.249) 

0.1276 

(1.865) 

0.06070 

(1.2906) 

0.05751 

(1.25025) 

b2= c  0.0148 0.0062 0.0059 0.0147 0.0062 0.0059 0.00253 0.0066 0.0063 

b3=Em 0.1280 0.0706 0.0747 0.1261 0.0704 0.0744 0.1289 0.0718 0.0788 

b4= m  0.0078 0.0032 0.0030 0.0078 0.0032 0.0030 0.0082 0.0043 0.0039 

b5=n 0.0128 0.0067 0.0064 0.0128 0.0067 0.0064 0.0149 0.0074 0.0069 

6b Q  0.0618 0.0622 0.0622 0.0616 0.0621 0.0621 0.0638 0.0640 0.0641 

7 cb   0.0165 0.0114 0.0110 0.0165 0.0114 0.0110 0.0172 0.0121 0.0120 

8 mb   0.0036 0.0025 0.0024 0.0036 0.0025 0.0024 0.0038 0.0029 0.0027 

9 cb k  0.0019 0.0013 0.0013 0.0019 0.0013 0.0013 0.0022 0.0015 0.0015 

10 mb k  0.0078 0.0052 0.0050 0.0078 0.0052 0.0050 0.0088 0.0062 0.0060 

11 1b k  0.0271 0.0187 0.0181 0.0271 0.0187 0.0181 0.0289 0.0198 0.0189 

12 2b k  0.0 0.0425 0.0411 0.0 0.0424 0.0411 0.0 0.0431 0.0421 

13 3b k  0.0 0.0 0.0073 0.0 0.0 0.0073 0.0 0.0 0.0082 

*
Values shown in bracket is the dimensionless mean of transverse central deflection 
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Fig. 3 Validation study of nonlinear transverse central deflection of FGM square plates resting on elastic 

foundation subjected to uniform pressure and temperature rise 
 

 

good agreement with percentage difference is less than 3% as compared to the published literature 

and results are convergences for higher number of elements. Therefore, (4×4) mesh is  
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Fig. 4 Validation study of COV on nonlinear transverse central deflection of square FGM simply supported 

plate for random change in b1=Ec, b3=Em, and b5=n 
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Fig. 5 The effect of temperature change, foundation parameters, volume fraction index and load parameters 

with random system properties on the (a) expected mean (b) COV,{bi (i=1,..,5)=0.1} and (c) 

COV{bi(i=6)=0.1} of transverse central deflection of square FGM simply supported plate resting on elastic 

foundation in thermal environments 
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taken into consideration in the present static study. 

Table 3 presents the effect of individual uncorrelated random system properties {bi(i=1 to 

13)=0.1} with foundation parameters (k1=100, k2=0, k3=0, k1=100, k2=10, k3=0, and k1=100, k2=10, 

k3=100) on the mean and COV of dimensionless mean and corresponding COV of transverse 

central deflection of FGM square simply supported elastically supported plates subjected to static 

loading in thermal environments using SOPT and MCS. The dimensionless mean and 

corresponding COV of transverse central deflection is highly affected by the random change in the 

COV of Ec, Em, Q and k2. The strict control of these parameters is therefore required, for high 

reliability of FGM plate. The mean and corresponding COV evaluated by FOPT, SOPT and MCS 

are in good agreement among one another which shows the efficacy of present stochastic 

approaches. The foundation parameters decrease the mean and increase the COV of transverse 

central deflection due to increase of overall stiffness. 

Fig. 3 shows the effect of the mechanical load parameters on thermo mechanically induced 

dimensionless mean nonlinear transverse central deflection of elastically supported FG Material 

(Si3N4/SUS304) square plate subjected to uniform static lateral pressure having a uniform 

temperature rise, b/h=20, n=2 with published results. The nonlinear results using present C
0
 FEM 

are compared with published results of (Shen and Wang 2010) using the semi analytical approach. 

The results using both of the approaches are in good agreements.  As the foundation parameters 

increases, the mean transverse central deflection decreases. It is because of foundation parameters 

increases the stiffness of the plate. Similarly, with the increase of temperate increment the mean 

transverse central deflection increases. It is because of thermal stresses oppose the mechanical 

stresses and ultimately stiffness of the plate decreases.  

Fig. 4 shows the comparison study of individual effect of random material properties on the 

variance (COV) of the transverse nonlinear central deflection of simply supported square Al2O3-Ni 

FG materials plate with published results of (Yang et al. 2005), for n=2, a/h=10. The present 

results for various random variables using SOPT using HSDT are in good agreement with the 

published results using the semi analytical method through the first order perturbation technique 

(FOPT). 

 

6.2 Parametric study for statistics of nonlinear bending response  
 
The effect of temperature change, foundation parameters, volume fraction exponents and load 

parameters with random system properties on the (a) expected mean (b) COV, {bi (i=1,..,5)=0.1} 

and (c) COV {bi (i=6)=0.1} of transverse central deflection of square elastically supported FG 

materials simply supported plate resting on elastic foundation in thermal environments is shown in 

Fig. 5, for b/h=65. For the same foundation parameters and temperature increments, with the 

increase of volume fraction exponent, the mean transverse deflection increases and corresponding 

COV with random change in all material and load parameters increases. It is because of with the 

increase of volume fraction exponent the volume of the metal part of the FG materials increases. 

For the same foundation parameters and volume fraction index, with the increase of temperature, 

the mean and corresponding COV increases due to increment of deflection. It is also expected that 

for temperature change and volume fraction index, as the foundation parameters increases, the 

mean decreases and corresponding COV increases with random change in material and load 

parameters. As the load parameter increases, the mean and corresponding COV with random 

change in material properties increases while a random change in foundation parameter decreases. 

Fig. 6 shows the effect of foundation parameters, volume fraction index and load parameters  
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Fig. 6 The effect of foundation parameters, volume fraction index and load parameters with random system 

properties on the (a)expected mean, and (b) COV{bi (i=11,12,13)=0.1 of  transverse central deflection  of 

FGM square simply supported plate resting on elastic foundations in thermal environments 
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Fig. 7 The effect of plate thickness ratio, temperature change, volume fraction index, load parameters with 

random system properties on the (a) expected mean (b) COV, {bi(i=1...5)=0.1}, and (c) COV, {bi(i=6)=0.1} 

of transverse central deflection of FGM square simply supported  plate resting on a nonlinear elastic 

foundation (k1=100, k2=10, k3=100) in thermal environments 
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Fig. 8 The effect of plate aspect ratios, temperature change, volume fraction index, and  load parameters 

with random system properties on the (a) expected mean (b) COV, {bi(i=1…5)=0.1} of transversecentral 

deflection of FGM simply supported plate resting on elastic foundation in thermal environments 
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Fig. 9 The effect of support conditions, volume fraction index and load parameters with random system  

properties having (a) expected mean (b) COV, {bi(i=1…13)=0.1}of transverse central deflection of FGM 

square simply supported plate resting on elastic foundation in the thermal environment 

 

 

with random system properties on the (a) expected mean (b) COV{bi (i=11,12 and 13)=0.1} of  

transverse central deflection  of FGM square simply supported plate resting on elastic foundations 

in thermal environments, b/h=75, T=400K. For the same volume fraction, exponent and load 

parameters, with the increment of foundation parameter, the expected mean decreases and 

corresponding COV with random change in foundation parameters increases. For the same 

foundation parameter and load parameter, with the increase of volume fraction, exponent, the 

expected means and corresponding COV with random change in foundation parameters increases. 

Similarly, for the same foundation parameter and volume fraction, exponent, with the increase of 

foundation parameter, the expected mean increases and corresponding COV with random change 

in foundation parameters decreases. 

The effect of the plate thickness ratio, temperature change, volume fraction indices, and load 

parameters with random system properties on the (a) expected mean (b) COV, {bi(i=1...5)=0.1} (c)  
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Fig. 10 The effect of volume fraction index, temperature change, and load parameters with random system 

properties on the (a) expected mean (b) COV, {bi(i=1…5) =0.1}, and (c) COV, {bi(i=11,12,13)=0.1 of 

transverse central deflection of FGM square simply supported plates resting on elastic foundation in thermal 

environments 

 

 

COV, {bi(i=6)=0.1} of transverse central deflection of square simply supported FGM plate resting 

on elastic foundation (k1=100, k2=10, k3=100) in thermal environments is shown in Fig. 7. For the 

same temperature change, volume fraction, exponent and load parameters, with the increase of 

plate thickness ratio, the mean transverse central deflection decreases and corresponding COV 

increases. All other effects are already explained in the previous figure discussion. 

Fig. 8 shows the effect of plate aspect ratios (b/a), temperature change, volume fraction index, 

and load parameters with random system properties on the (a) expected mean (b) COV, 

{bi(i=1…5)=0.1} of transverse central deflection of simply supported FGM plate resting on elastic 

foundation (k1=100, k2=10, k3=100) in thermal environments for b/h=90. For the same temperature 

change, volume fraction index and load parameters, with the increase of the plate aspect ratio, 

mean and corresponding COV with random change in material properties increases. The effect of 

volume fraction on the mean and corresponding COV is more sensitive for rectangular plate as 

compared to square plate. 

The effect of support conditions (namely SSSS, CCCC, and CSCS), volume fraction index and  
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(a) (b) 

 
(c) 

Fig. 11 Through the thickness variation of in-plane displacements in (a) x, (b), y, and (c) z directions of 

simply supported FGM (ZrO2/TI-6Al-4V) plate with various volume fraction index 

 

 

load parameters with random system properties having on the (a) expected mean (b) COV, 

{bi(i=1…13)=0.1} of transverse central deflection of square simply supported FG material plate 

resting on elastic foundation (k1=100, k2=10, k3=100), for b/h=85 and T=150K in thermal 

environment is shown in Fig. 9. For the same volume fraction exponent and load parameter, 

among the given different boundary conditions simply supported boundary is most sensitive to the 

mean and COV with random change in all system properties. This is due to decreased effect of 

boundary constraints which significantly decreases the stiffness of the plate. 

The effect of volume fraction index, temperature change, and load parameters with random 

system properties on the (a) expected mean (b) COV, {bi (i=1…5)=0.1}, and (c) COV, 

{bi(i=11,12,13)=0.1} of transverse central deflection of FGM square simply supported plates 

resting on elastic foundation(k1=100, k2=10, k3=100) for b/h=95 in thermal environments as shown 

in Fig. 10. For the same volume fraction index and load parameters, as the temperature increases, 

the mean and corresponding COV with random change all FGM material properties increase. For 

the same temperature change and load parameters, as the volume fraction increases the mean and 

corresponding COV with random change all FGM material properties increases while random 

changes in foundation parameters decreases. It is because of the plate stiffness is higher for 

metallic plate and lower for ceramic plate. 
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(c) (d) 

Fig. 12 Through the thickness variation of shear stresses (a) τxy,  (b) τyz, and normal stresses (c) σxx and (d) 

σyy of simply supported FGM (ZrO2/ TI-6Al-4V) plate with various volume fraction index 

 

 

Fig. 11(a)-(c) show variation of displacements in x, y, and z axis across the thickness of simply 

supported FGM (ZrO2/TI-6Al-4V) plate with various volume fraction index and having TD 

material properties, UT, a/h=20,  T=100 K and Q=100. It is clear that very little deformation has 

been occurred in the u-and v-directions, respectively. No deformation is observed in the w 

direction due to independent of thickness. 

Variation of transverse shear stress and in plane stress across the thickness of simply supported 

FGM (ZrO2/TI-6Al-4V) plate with various volume fraction index with TD material properties, 

uniform temperature distribution, a/h=20, T=100 K and Q=100 is shown in Fig. 12(a)-(d).  With 

the increase of volume fraction index, the direct stresses (σxx and σyy) are highly sensitive while, 

shear stresses (τxy, and τyz) are least sensitive.  

 

 

7. Conclusions 
 

The stochastic finite element method using SOPT and independent MCS methods combined 
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with Newton-Raphson approach via HSDT is adopted to evaluate the second order statistics in 

terms of the mean and COV of nonlinear transverse central deflection of the elastically supported 

FGM plate subjected uniformly distributed time dependent in the thermal environment. The 

following conclusions are drawn based on observation of the present study: 

• The FG materials plate resting on elastic foundation is more sensitive to mean and COV with 

random change in Young modulus of respective ceramic and metal, external mechanical loading 

and shear foundation parameter. The proper and strict control of above random system parameters 

is required for high reliability and safety of the design which is extremely important for aerospace 

and other high sensitive applications.  

• The increment in temperature, volume fraction index and load parameters make the plate 

more sensitive to mean and COV of transverse central deflection by random change in all system 

properties. The proper controls of these parameters are required for high reliability point of view.  

• The effect of shear foundation plays a significant role in supporting the elastic foundation. For 

reliable and safe design, thick, clamped supported square plate is most desirable. 
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