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Abstract.  This study aimed to investigate the effect of initial member length an imperfection in the load 

carrying capacity of double-layer domes space structures. First, for the member length imperfection of each 

member, a random number is generated from a normal distribution. Thereupon, the amount of the 

imperfection randomly varies from one member to another. Afterwards, based on the Push Down analysis, 

the collapse behavior and the ultimate capacity of the considered structure is determined using nonlinear 

analysis performed by the OpenSees software and this procedure is repeated numerous times by Monte 

Carlo simulation method. Finally, the reliability of structures is determined. The results show that the 

collapse behavior of double-layer domes space structures is highly sensitive to the random distribution of 

initial imperfections. 
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1. Introduction 
 

In the recent decades, the use of space structures to cover large spans with no internal columns 

has become increasingly prevalent due to advantages such as low weight and considerable 

stiffness. These structures are regularly built by connecting steel rods in single or double layer 

forms (Thornton and Lew 1984). The factors that affect the behavior of these structures are quite 

diverse and depend upon the behavior of every single member and also their connecting system. 

Although these structures are manufactured industrially, the members of these structures behave 

inconsistently because of different mechanical and geometrical properties. Carried out studies on 

double-layer grids have shown that these types of structures have a symmetrical behavior in the 

elastic state but display an asymmetrical behavior in the inelastic state and this is due to the 

existence of common imperfections in the structure. 
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Space truss structures have been the subject of much study. Schmidt et al. (1980, 1982), have 

indicated that space trusses may fail in a brittle and unstable manner, in which the buckling of one 

member due to overloading can trigger a progressive collapse of the whole structure, in which 

successive members fail in a rapid sequence. Affan (1987) and Affan and Calladine (1989) 

estimated the number of redundant bars that could be removed without affecting truss stability to 

be 15% to 25% of the total number of truss members. It is not possible to attribute this result to all 

types of space structures. The failure of the stadium roof in Hartford in 1984 is a practical example 

of progressive collapse. Researchers know that member imperfection is one of the most important 

causes of this type of failure (Smith and Epstein 1980, Thornton and Lew 1984). 

Space structures have a high degree of indeterminacy and typically contain hundreds of 

members which inevitably incorporate different types of imperfection. Initial curvature of a truss 

member is a common form of geometric imperfection in space structures. To estimate the safety 

and reliability of such structures, it is necessary to consider the effects of such uncertainty. Several 

investigations (Roudsari and Gordini 2015, Sheidaii and Gordini 2015, Wada and Wang 1992, 

Gholizadeh et al. 2016) have addressed one or more of these random variables. Roudsari and 

Gordini (2015) studied the Random imperfection effect on reliability of space structures with 

different supports. They showed that geometric imperfections like initial curvature have 

considerable influence on the load-carrying capacity of these structures. El-Sheikh (1991, 1995, 

1997, and 2002) studied the sensitivity of double-layer space structures to member geometric 

imperfections and the overall strength, behavior, and the location of trusses to determine critical 

areas at which imperfect members should be avoided. El-sheikh also has investigated the effect of 

member length imperfections on the capacity and failure mechanism of triple-layer space 

structures. 

Schenk and Schuëller (2005) assessed the stability of cylindrical shells with random 

imperfections. The employed the Monte Carlo simulation (MCS) method and assumed the stress-

strain relationship to be linear. Schenk and Schuëller (2007) investigated the effect of random 

imperfections on the critical load of isotropic, thin-walled, cylindrical shells under axial 

compression by means of static nonlinear finite element analysis. They proposed the cumulative 

distribution function (CDF) of the limit load using the MCS. Broggi and Schuëller (2011) 

presented an efficient model of imperfections to analyze the buckling of composite cylindrical 

shells. De Paor et al. (2012) investigated the effects of random geometrical imperfections in shell 

cylinders and based on several experimental and numerical samples concluded that the random 

distribution of imperfections has a good concurrence with the normal distribution. Moreover, in 

recent years, many researches are conducted on the influence of geometrical imperfections on 

structural behavior. Kala (2013) analyzed the effects of a random distribution of imperfections on 

the lateral-torsional buckling of I-shaped rolled beams with simple supports. 

Vryzidis et al. (2013) investigated the effect of random initial imperfection on the buckling 

capacity of steel pipes. Numerical analyses and experimental results have shown that initial 

imperfection has a noticeable effect on system buckling capacity and affects the failure mode of 

the pipes. Zhao et al. (2014) used Monte Carlo simulation to investigate the effects of random 

geometrical imperfections on concentrically-braced frames and showed that these imperfections 

have a substantial effect on design forces. Zhou et al. (2014) investigated the effect of member 

geometric imperfection on nonlinear geometrically buckling and seismic performance of a new 

style of space steel structure, a suspend dome, which is composed of a reticulated shell and cable-

strut system. Mousavi et al. (2015) investigated the effects of applying different buckling modes 

obtained by linearized eigenvalue buckling analysis as the initial imperfection for double-domed 
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free-form space structures.  

They reported that in free-form double-domes the lowest buckling modes could not be 

considered as effective for changing the bifurcation equilibrium path into a limit equilibrium path. 

Reliability analysis methods have been developed over the last three decades (Schueller 1987, 

Fang et al. 2013, Hurtado and Barbat 1998, Zhao et al. 2013) and have stimulated the interest for 

the probabilistic optimum design of structures. Papadrakakis and Lagaros (2002) investigated 

reliability-based sizing optimization of multi-story 3-D frames. The objective function was the 

weight of the structure and the constraints were both deterministic and probabilistic. Randomness 

of loads, material properties, and member geometry were taken into consideration in reliability 

analysis using MCS. The probability of failure of the frame structures was determined by limit 

elasto-plastic analysis. Chen et al. (2002) assessed the probabilistic dynamic analysis of truss 

structures by considering the randomness of both physical parameters (elastic module and mass 

density) of structural materials and geometric dimension of bars consecutively and simultaneously. 

Koutsourelakis et al. (2004) investigated a reliability-based structure in high dimension and 

considered many random variables. They used linear sampling to investigate the failure domain 

and concluded that in order to correctly evaluate a structure; various factors which are effective in 

a structural capacity should be considered randomly. Cardoso et al. (2008) examined a 

methodology for computing the probability of structural failure by combining neural networks and 

MCS. Torii et al. (2012) investigated an approach to reliability-based shape and topology 

optimization of truss structures. They presented an approach to simultaneously optimize the 

geometry and topology of statically undetermined trusses considering the acting forces and the 

yielding stress of the bars as random variables. Lopez et al. (2014) investigated global reliability 

based design optimization of the size and shape of truss structures. 

In this study the effect of length imperfection in the bearing capacity of double-layer domes 

space structures has been probabilistically investigated. Length imperfections distribution among 

the members has been considered probabilistically and the structure’s reliability has been studied 

using the Monte Carlo simulation method. Considering the nonlinear behaviors and the existence 

of hundreds of random variables, calculating the structural reliability is very costly and time 

consuming. Therefore, in this paper, the structure’s reliability has been obtained through a direct 

and simpler approach. All of the analyses have been carried out using the finite element software 

OpenSees (Mazzoni et al. 2005, McKenna et al. 2010). 

 

 

2. Reliability and Monte Carlo simulation method 
 

Statistical analysis techniques have become more widespread in reliability engineering. 

Structural reliability is the probability that a system will function desirably under predetermined 

circumstances for a specific time. This means that the structure must perform its intended duty 

without failing. In many circumstances, it is impossible to mathematically describe the response of 

structural systems because of random nature and the complexity of the applied loads and initial 

imperfections. Even after finding a mathematical model to predict the behavior of the system, 

there is no closed form solution for solving the equation. In such cases, simulation is one of the 

most applicable techniques to acquire the required information. Simulation is a special technique 

to approximate the quantities that are difficult to obtain analytically. Amongst many of simulation 

methods, the Monte Carlo Simulation (MCS) method is one of the well-known and common 

procedures in solving complex engineering problems (Melchers 1999, Moghadasa and Fadaeeb 
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2012). The base of all simulation procedures is to generate random numbers that are distributed in 

0 to 1 interval. These random numbers could be generated by using a computer programs or 

random number generating algorithms. In the OpenSees software, standardized algorithm in C++ 

programming language can be used to generate random numbers. After that, many analyses are 

carried out and the probability of the collapse of the system is calculated. It should be noted that 

the calculated collapse is an estimation of the real collapse of the system. By increasing the 

number of simulations, the estimation will get closer to the actual state. Although this method is 

very time consuming, it is used in a wide range of engineering problems (Nowak and Collins 

2000).  

Monte Carlo Simulation is a simulation method that presents the following characteristics: it 

can be applied to many practical problems allowing the direct consideration of any type of 

probability distribution for the random variables; it is able to compute the probability of failure 

with the desired precision and it is easy to implement. However, despite the advantages it presents, 

the use of this method requires a great number of structural analyses, one for each sample of the 

set of random variables. The number of analyses needed to evaluate the probability of failure of a 

structure with a prescribed precision depends on the order of magnitude of that probability. 

A reliability problem is normally formulated using a failure function, g(X1, X2,…, Xn), where 

X1, X2,…, Xn are random variables. Violation of the limit state is defined by the condition g(X1, 

X2,…, Xn)≤0 and the probability of failure, Pf, is expressed by the following expression. 

  (1)                         ,...dd d)X,...,X,(f...0)X,...,X,(g P 21n21
)X,...,X,(g

n21
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n
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Where (X1, X2,…,Xn) are values of the random variables and f(X1, X2,…,Xn) is the joint 

probability density functions. The Monte Carlo method allows the determination of an estimate of 

the probability of failure, given by 
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According to Eq. (1), N independent sets of values X1, X2…Xn are obtained based on the 

probability distribution for each random variable and the failure function is computed for each 

sample. Using MCS, an estimate of the probability of structural failure is obtained by 

(4)                                                                                                                                      
N

N
P

j

f   (4) 

Where Nj is the total number of cases where failure has occurred. 

 

 
3. Analytical model 

 
Two Kiewitt large-span double-layer spherical lattice shells with different height-to-span ratios  
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Fig. 1 Schematic of lattice dome 

 

  
(a) GDA: Height-to-span ratio, 1/3 (b) GDB: Height-to-span ratio, 1/6 

Fig. 2 Elevation of Kiewitt double-layer spherical lattice shell with four height-to-span ratios 

 
Table 1 Design sections of the considered structures 

Name of structures Design Sections (mm) 

GDA CHS 160×12 CHS 114.3×10 CHS 108×8 

GDB CHS 160×12 CHS 108×8 CHS 88.9×12 

 

 

(Figs. 1 and 2) are selected to model. The 2 double-layer Kiewitt reticulated dome consisted of 8 

latitudinal circles and 6 main radial ribs that divided the sphere into axial symmetrical fan-shaped 

segments. Diagonal members were applied to link the latitudinal and the main radial members, and 

similar triangular grids were thus formed all over the spherical surface. The geometry and material 

properties of the lattice shell are taken as follows: span length L=55 m; four curvature radiuses are 

selected as follows, R=27.95 m and 29.16 m respectively. The structure was designed using the 

AISC allowable strength design method based on weight optimization of the structural members 

(AISC 2010). Two different types of loads are considered: the dead load of 0.5 KN/m
2
 and the 

snow load equal to 2.0 KN/m
2
. Design sections are introduced in Table 1 (The European Standard 

2006). In this model, the dead and snow loads are applied on the joints of the upper layer as 

concentrated loads. The diagonal members over the supports are assumed to be solid to prevent 

local collapse of these members and the instability of the entire structure. Steel Circular Hollow 

Sections (CHS) are used as the principal members of the double-layer dome with a yield stress of 

235 MPa, ultimate stress of 355 MPa, and modulus of elasticity of 210 GPa. All of the boundary 

nodes at the outmost ring in the upper layer of the numerical model are pinned and restrained in 

vertical, radial and tangential directions to the dome boundary. 
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For the grids in Fig. 2, first letter denotes the word “grid”, the second letter denotes the word 

dome and the third character denotes the Height-to-span ratio. For instance, “GDA” is a dome grid 

with Height-to-span ratio 1/3. 

 

 

4. Modelling the nonlinear behavior of compressive members 
 

Length imperfections cause initial deformation and stress in a structure. Different methods can 

be used to investigate the effect of this type of imperfection on a structure. Methods such as the 

virtual work method, compatibility of deformations, concept of energy, and Koiter’s theory of 

stability necessitate the solving of complex equations; thus, employing them for complex 

structures such as space trusses is not possible. One suitable method to investigate the effects of 

these types of imperfections is nonlinear finite element analysis. The behavior of compressed 

members has a decisive effect on the failure behavior of double-layer space structures. Load 

transfer in the members of double-layer grids occurs predominantly in the form of axial forces. 

When a member of the structure yields under tensile force, its stiffness declines to zero; this state 

is consistent until the strain hardening phase. When a member buckles under compressive force 

and cannot sustain more loading, or if shortening of a member occurs, the axial force of the 

member must decrease for the member to maintain its state of balance. In other words, the 

compressed member will show strain softening behavior after buckling. Once the load applied to 

the structure exceeds the elastic limit load, buckling of the compressed member causes an abrupt 

decline in the bearing capacity of that member and redistribution of the structure’s internal forces 

ensues. If the structure is able to resist this load redistribution, it will be able to withstand 

additional loading. If not, other members of the structure will fail and there exists the possibility of 

successive failure of members, i.e., progressive collapse. 

The existence of length imperfections causes initial deformations and stresses in the structure. 

To investigate the effects of this type of imperfection in the structure, the nonlinear finite element 

method can be employed. To carry out the static nonlinear analysis for assessing the collapse 

behavior of space structures, first the nonlinear behavior of each member will be determined. In 

this paper, the axial load-axial displacement behavior of the members in tension has been 

considered to be elastic perfectly plastic. 

To determine the axial load-axial displacement response of compression members, the 

nonlinear static analysis has been utilized. To obtain the governing buckling mode of the members, 

an initial curvature with the maximum lateral deflection of 0.001 L is considered. The initial 

geometrical imperfection has been considered as a sinusoidal half-wave in such a way that the 

maximum deviance will be in the mid-span of the member (Fig. 3). This member was created in 

OpenSees with twenty Elastic-Perfectly Plastic nonlinear displacement-based beam-column 

elements with equal length, integrated at 4 points along the element. The integration is based on 

the Gauss-Legendre quadrature rule which enforces Bernoulli beam assumptions. All the subjected 

profiles in this study have been modelled using the “Fiber section” model in the OpenSees 

software. The cross section of the member along its radius and circumference has been divided to 

4 and 16 equal parts respectively (Sheidaii and Gordini 2015). 

Afterwards, for each of the design sections, a nonlinear analysis has been carried out and the 

load or the maximum force that the member can bear is calculated. In Fig. 4, the load-displacement 

diagrams for each one of member are depicted. This figure has been drawn based on the 

corresponding load and displacement.      

138



 

 

 

 

 

 

Reliability analysis of double-layer domes with stochastic geometric imperfections 

  
Fig. 3 Geometry and mesh properties of a compression member 

 

 
Fig. 4 Axial load-axial displacement behavior of the compression members 

 

 
Fig. 5 The axial stress-strain diagram of imperfect member (CHS 114.3×10 section) 

 

 

The axial stress-strain relationship of structural members is assumed to be elastic perfectly 

plastic in tension. However, the performances of compressive members are considered to be a 

function of three fundamental factors namely: the slenderness ratio, the yield stress and the initial 

imperfection. Based on the variation of these three parameters, the compression members may 

have a ductile or brittle behavior. The axial force-displacement relationship of an imperfect  
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Fig. 6 Probability density function of the members’ length imperfections in compression members 

with normal distribution 

 

  
(a) Long member (b) Short member 

Fig. 7 The modelling approach of the member with the length imperfection (EL-Sheikh 1997) 

 

 

member is obtained by the nonlinear static analysis using the Newton-Raphson algorithm and 

considered as Fig. 5.  

 

 
5. Random modeling of the length imperfection the members 
 

In this study, Member length imperfections were also considered using normal distribution. The 

parameters of the normal distribution had an average of zero and a standard deviation of 0.0001 L 

(L=member length). The maximum imperfection was limited to 1% of the member length because 

application of members with large imperfections can easily be avoided. Member length 

imperfections for both long and short members were randomly taken into account according to the 

randomly generated numbers. These random numbers were generated using a normal distribution 

and the aforementioned specifications to obtain the PDF of the imperfections shown in Fig. 6.  

The method proposed by El-Sheikh was employed to model length imperfections of the 

members. Fig. 8 shows that, for a member to be in its ideal place, it must be subjected to tension or 

compression. These forces change the behavior of the member and also change the stress-strain 

diagram of the imperfect member. The length imperfections shown in Fig. 7 have been exerted as  
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(a) a long member with ΔL=+2.3 (b) a short member with ΔL=-1.7 

Fig. 8 Idealized stress-strain relationship of imperfect members under tension and compression for the 

88.9×12(mm) sample with 3 meter length 

 

  
(a) GDA (b) GDB 

Fig. 9 Load-displacement diagrams of the double-layer domes space structures 
 

 

force couples on the ends of the members to place them in position by lengthening or shortening 

them. The force exerted on the member to cause a change in length is 

(5)                                                                                                                         
L

LEA
P


  (5) 

Where P, E, A and ΔL are the force applied to the member, the modulus of elasticity, the 

member’s cross sectional area and the member’s length imperfection, respectively. 

These forces affect the stress-strain specifications of the member and to shorten or elongate the 

member by ±ΔL, a force couple is needed to produce an axial stress-equal to σ=E. ε=E.ΔL/L. So, 

each one of the generated ΔLs corresponds to the every forces that alter the behavior of the 

imperfect member. Ultimately, these changes only appear in the ideal stress-strain diagram of the 

imperfect member. Fig. 8 shows the stress-strain diagram for a three meter pipe member with the 

cross section of 88.9×12 millimeters, having taken into account the length imperfection of the  
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Table 2 Statistical specifications of the collapse load 

Grids Name 
Failure Load 

Mean (x) Deviation (S) PMAX PMIN RSD (s/x) 

GDA 5330 150 6651 4400 0.028 

GDB 7021 230 7500 6100 0.032 

 

 
Fig. 10 The maximum, average, and minimum load bearing capacity of the double-layer dome space 

structures (GDB) 

 

 

member. The length of imperfection of a member is random and follows the probability density 

function (PDF). Fig. 8, for example, the values -1.7 mm and +2.3 mm have been considered as the 

imperfections that cause a member to be short or long, respectively. It is worth mentioning that in 

this study, for each length imperfection, such calculation has been carried out and the stress-strain 

specifications of the imperfect member, as well as the behavioral model for both long and short 

members have been obtained and illustrated in Fig. 8. Each stress-strain specification that 

corresponds to a certain imperfection was modeled as a random variable in OpenSees. For each 

imperfect member of the grid, a stress-strain diagram was generated using random numbers. 

 
 
6. Results of the random collapse analysis 
      

To calculate the bearing capacity of the imperfect grid, first the amount of the length 

imperfection of the members has been considered as a random variable with normal distribution. 

By allocating a random length imperfection to each member, their idealized stress strain diagrams 

change and the effect of the length imperfection of the members will have been taken into account 

by modifying these diagrams. 

After allotting the stress-strain diagram of the imperfect material to each member, the structure 

was analyzed with the Push Down analysis along the vertical direction. The random allocation of 

imperfections and the nonlinear Push Down analysis were repeated thousands of times. At first 

100 analyses are done, then average failure load are computed, in the next step 200, 300, … and  

1000 analyses are done and average failure load are calculated again. It is observed that, there is no 

remarkable change in amount of average failure load after 500 analyses. Therefore to obtain more  
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Fig. 11 Reliability of selected structures 

 
Table 3 Reliability of the GDA and GDB double-layer domes space structures 

Reliability 
Capacity ratio of imperfect to perfect structure Coefficient Load factor 

GDA GDB GDA GDB 

1.00 0.653 0.800 1.35 1.20 

0.99 0.670 0.811 1.33 1.19 

0.98 0.700 0.822 1.30 1.18 

0.97 0.702 0.836 1.30 1.17 

0.96 0.704 0.840 1.30 1.16 

0.95 0.708 0.852 1.29 1.15 

0.94 0.721 0.858 1.28 1.14 

0.93 0.734 0.861 1.27 1.14 

0.92 0.735 0.863 1.27 1.14 

0.91 0.741 0.866 1.26 1.13 

0.90 0.742 0.868 1.26 1.13 

0.85 0.745 0.877 1.26 1.12 

0.80 0.748 0.885 1.25 1.12 

0.75 0.750 0.891 1.25 1.11 

0.70 0.760 0.910 1.24 1.09 

 

 

certainty and valid results about reliability, 1000 analyses are conducted. According to above 

descriptions, we would come to the same result even with more than 1000 analyses, since there is 

no significant modification in average failure load after 500 analyses. In these analyzes, both the 

material and geometrical nonlinearities were accounted for and the diagram of vertical load 

applied to the structure against the vertical displacement of the mid joint of the lower layer was 

derived. The obtained results from 1000 simulations are presented as load-displacement diagrams 

in Fig. 9. In these diagrams, the vertical and the horizontal axes represent force and displacement 

in terms of KN and millimeters, respectively. 

If the first maximum points in Fig. 9 are considered as the collapse and capacity points of the 

structures, the statistical distribution of the collapse load and the respective statistical parameters 

can be achieved. The statistical parameters of the systems, such as the average and the maximum, 

minimum as well as the standard deviation of the collapse load, are summarized in Table 2. The 
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red dashed lines represent the average of the load bearing capacity of the considered structures. 

For more clarification, the maximum, average, and minimum of GDB grid is demonstrated in Fig. 

10.  

According to Fig. 9 and Table 2, it is obvious that the GDB grid can carry more loads in 

comparison with the GDA grid. Furthermore, the average load that is carried by the GDB grid is 

31 percent more than the GDA grid. As it can be seen, by decreasing the height to span ratio, 

increasing the load bearing capacity of the structures occurred. GDB have a much higher capacity 

compared to the GDA and when a member of the structure fails, the drop in the capacity of the 

system is quite low. Structural reliability is the probability that a system can desirably resist under 

a predetermined conditions. Reliability of a structure is commonly shown by “R” and is defined as 

R=1-Pf, in which Pf is the probability of the failure of the structure. The reliability of the structure, 

R, at a specific applied load, Fs, is the probability that the system collapse load, F, is greater than 

the specific load, Fs. This can be expressed as 

(6)                                                                                                                     Fs)(F p Fs)( R  (6) 

By using this definition, the Reliability of selected structures is calculated and its results are 

introduced in Fig. 11 and Table 3. The second to fourth columns state the amount of strength 

reduction in each support condition because of the imperfections. It is worth noting that the perfect 

structure is a structure without any imperfection, but in reality, construction of such an ideal 

structure is impossible. Therefore, in the present work, the structure with the maximum load 

carrying capacity was considered as a perfect structure. The fifth to seventh columns shows the 

drop in capacity of the system caused by the existence of geometrical imperfections. A column 

labeled “coefficient load factor” has been added. In order to achieve the intended safety, the 

designer of the structure must multiply the required ultimate capacity of the system by the 

coefficient load factor from the last columns of the tables. 

According to Fig. 11, the GDB system is more reliable than the GDA system. It is worth noting 

that the perfect structure is a structure without any imperfection, but in reality, construction of such 

an ideal structure is impossible. Therefore, in the present work, the structure with the maximum 

load carrying capacity was considered as a perfect structure. It can be seen from Fig. 11 and Table 

3 that, for example, for designing a GDA grid and reliability of 0.99, the capacity of the imperfect 

structure is 33 percent less than the capacity of the perfect structure. Similarly, for reliability of 

0.95, the capacity of the imperfect structure is about 75 percent of the capacity of the perfect 

structure. In general, existence of initial imperfections in the selected space structure reduced the 

capacity of the system from 12 percent through 35 percent. Therefore, this nonlinearity on capacity 

reduction should be considered in designing of these kinds of structures.  

In addition to this, by knowing the maximum load bearing capacity of the structure, the 

designer can ensure the safety of the structure under any probable overload and if necessary, adopt 

the appropriate measures to increase the safety of the structure.  

 

 

7. Conclusions 
 

The aim of the present work is to study reliability of domes space structures under a random 

member’s length imperfections. In this study, effects of random initial length imperfections on 

double layer domes grids have been investigated. The carried out investigations based on nonlinear 

finite element analyses in the OpenSees software and the Monte Carlo simulation method suggest 
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the sensitivity and significant capacity drops of these structures due to random initial geometric 

imperfections. By deriving the reliability diagrams and by employing them in the design of the 

structure, the necessary design load to achieve the required safety can be easily determined. As a 

matter of fact, possessing such diagrams helps the designer to conduct his designs with the 

intended level of safety and without the need to perform detailed reliability analyzes for every 

specific design. It is worth noting that the results of this study are only applicable for double-layer 

flat space structures and using these results for other types of space structures is not recommended. 

Determining the reliability of other types of space structures requires further investigations in the 

same way. 
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