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Abstract.  This paper presents a method of design for the energy harvesting of a piezoelectric cantilever 

beam. Vibration modes have strain nodes where the strain distribution changes in the direction of the beam 

length. Covering the strain nodes of the vibration modes with continuous electrodes effects a cancellation of 

the voltages outputs. The use of segmented electrodes avoids cancellations of the voltage for multi-mode 

vibration. The resistive load affects the voltage and generated power. The optimum resistive load is 

considered for segmented and continuous electrodes, and then the power output is verified. One of the 

effective parameters on energy harvesting performance is the existence of concentrated mass. This topic is 

studied in this paper. Resonance and off-resonance cases are considered for the harvester. In this paper, both 

theoretical and experimental methods are used for satisfactory results. 
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1. Introduction 
 

Energy harvesting of structural vibration is useful for electrical devices. Research and studies 

have shown the importance of this subject. Harvesting is suitable for generating power and it can 

be applied to devices and rechargeable batteries. Energy harvesting is used in structural health 

monitoring and wireless sensors. Some of research has focused on dimensions,  material 

parameters, and the effect of shape on the performance of piezoelectric energy harvesting.  

Renno et al. (2009) suggested a procedure to maximize the energy harvesting of a vibration 

source by optimization of the parameters of the structures. They presented an analysis of the power 

generated from the energy harvesting of piezoelectric systems. Gammatoni et al. (2010) proposed 

a method to maximize the harvested energy for a range of excitation frequencies. Elvin et al. 

(2003) concluded that a load from a roller cart can generate mechanical strains for energy 

harvesting. He applied this subject for the implementation of damage detection. Nuffer and Bein 

(2006) explained the energy harvesting application to generated power for a wireless sensor. 

Granstrom et al. (2007) discussed the power generated from oscillating tension of a strap of 

piezoelectric polymer. Leland et al. (2004) used the energy harvesting of a device to generate  
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electrical power from the vibration of a staircase. Jeon et al. (2005) applied a thin film 
piezoelectric generator for Micro-Electro-Mechanical System devices. Zheng et al. (2009) used a 
configuration optimization method for energy harvesting of a piezoelectric beam by the energy 
conversion factor. The electric circuitry and the static load are the limitation of this study. Ertruck 
and Inman (2008) proposed single degree of freedom modeling and distributed modeling for the 
energy harvesting of a cantilever beam through corrections to the models. Shen et al. (2007) 
verified the energy harvesting performance of various kinds of piezoelectric materials. Lee et al. 
(2009) presented a new conceptual design for the energy harvesting of a piezoelectric beam to 
apply multiple vibration modes with a segmented piezoelectric structure. Another parameter for 
the verification of energy harvesting performance is electrical circuitry. Ottman et al. (2002) 
researched the effect of a converter to maximize the generated power of a piezoelectric device. 
Guan and Liao (2007) showed the effect of energy harvesting circuits on storage voltage. Rupp et 
al. (2009) presented a design method for the energy harvesting of a piezoelectric shell with the 
parameters of piezoelectric material and a resistive load on the electric circuit.  

Previous research has been focused on geometry, material parameters, and electrical circuitry 
for maximizing of the energy harvesting of a piezoelectric structure. Another parameter for 
harvesting the energy of piezoelectric beams is the existence of the strain nodes in the vibration 
mode shape. Crawley and Luis (1987) explained the effect of strain nodes on the performance of 
the actuator. According to their research, the position of the actuator must be away from these 
points. Otherwise the force produced by the actuator will be decreased, since one section of the 
actuator will be opposing the other. Therefore, it is necessary to use segmented actuators for 
controlling flexible structures.  

The vibration modes of a cantilevered beam have strain nodes where strain distribution changes 
in the direction of the beam length. In this paper, it is demonstrated that covering the strain nodes 
of the vibration modes with continuous electrodes effects cancellation of voltage output. The use 
of segmented electrodes avoids cancellation of the voltage for multi-mode vibration. 

A bimorph cantilevered beam is used in both the continuous electrode example and the 
segmented electrode example. The effect of the concentrated mass at the tip of the beam is also 
considered. The behavior of the harvester is verified in both resonance and off-resonance 
situations. 

 
 

2. Theoretical formulation 
 
Fig. 1 shows the bimorph beam with the substructure and electrical circuit. The circuit equation 

of a piezoelectric layer and an electric current are expressed by Gauss’s law 

   
.

A
l

v td
D ndA

dt R


                                  
(1) 

Where D is the vector of electric displacement. Rl is the resistive load, v is the electric potential, 
n is the unit normal, and A is the electrode area. 

The electrode covers piezoelectric the layers perpendicularly in 3-directions, so that the D3n3 
component is the result of inner product D.n in Eq. (1). 

The axial strain is proportional to the curvature of the beam at level ‘z’ according to Eq. (2). 
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Table 1 The equations of r and Cp
eq 
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(7) 

Where θr is the current parameter, that is a function of the geometric, material, and 
piezoelectric coupling parameters and the bending slope Eigen function at the boundaries of the 
electrodes. θr and Cp

eq are expressed according to Table 1. 
 rd x

dx


 is the modal velocity response, which changes according to the voltage response. If 

the electrodes cover a region over the piezoceramic, θr is expressed as 

 
31 2

e

s

x

p r
r

x

h d x
e b

dx


  

                                     

(8) 

According to Eq. (8), the electromechanical coupling term depends on the locations of the 
electrodes. 

By exciting the structure harmonically at a certain natural frequency, ωr, Eq. (7), is expressed 
as follows 

   
rj teq

p r r
l

dv t v t
C A e

dt R
 

                                   
(9) 

Where rj t
rA e 

 is the modal velocity response. That is the function of the voltage response 
given by v(t). Therefore the exciting electrical circuit depends on the respective mode shape. 

By using Eq. (10) in the equation of motion and electromechanical equation, Eqs. (11) and (12) 
are obtained (Ertruck and Inman 2008) 

   j t j t
r rt H e v t Ve  

 r rA j H
                        (10) 

 2 2 2r r r r r rj H V F        
                          (11)

 

158



 
 
 
 
 
 

Increasing the performance of energy harvesting in vibration mode shapes 

1

1
0eq

p r r
rl

j C V j H
R





 
   

 
  

                           

(12) 

2  2 dωaaρbhF ddpr                                 (13) 

Where ad, is the excitation acceleration amplitude, ω is the excitation frequency, t is time, ρ is 
density, d is the translate displacement amplitude of the clamp, V is voltage amplitude, and Hr is 
the time function amplitude. 

According to Eq. (8), the bending slopes at the boundaries of the electrodes are the effective 
parameter in energy harvesting. For a certain mode shape, if the bending slopes at the boundaries 
of the electrodes are close to each other, the electrical output is low. The reason for this problem is 
the strain distribution in the length of the structure. If the sign of the strain distribution changes, 
cancellation of the electrical output from energy harvesting is obtained for a certain vibration 
mode. 

The Eigen curvature function in Eq. (7) shows the cancellation conditions. The positive and 
negative areas under the Eigen curvature function, by integrating electric displacement over the 
electrode area, reduce electrical output. Thus, integration over the segmented electrode areas can 
avoid the phenomenon of cancellation. The position of the sign change of the curvature is called 
the strain node. The bending strain depends on the curvature at one point of the thin beam, so the 
inflection points of the Eigen function are the strain nodes for the vibration mode. 

A cantilevered beam based on the Euler Bernoulli theory is considered for the position of the 
dimensionless strain nodes. The result of the normalized Eigen function of the vibration mode for 
the short circuit condition is expressed as 

  1
cosh cos sinh sinr r r r

rx x x x x
mL L L L L

                          (14) 

sinh sin

cosh cos
r r

r
r r





 
                                    

(15) 

The eigenvalue of the vibration mode (λr) is obtained by Eq. (16) 

1 cos cosh 0                                      (16) 

The positions of the strain nodes are the basis of the following equation 

 cosh cos sinh sin 0r r r r r

x
x x x x x

L
        

           

(17) 

The undamped natural frequencies of the cantilever piezoelectric beam in the short circuit state 
are obtained with the following equation 

 
33 3

2
114

2
2

3 8 2 8
Es s s

r r s s p p s p

h h hYI b
m b h h YI Y c h

mL

                 
   

    

(18) 

Where Ys is the elastic module of the substructure, hs, is thickness of the substructure, 11
Ec is 
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Table 8 The dimensions and the electrical capacitance of the divided electrodes 

Cs(nF)  hp(mm) b(mm) B(mm) x ID 

22.8  0.38  7.1  5.744  0.1436 1  

1.574  0.38  7.1  3.964  0.2427 2  

4.673  0.38  7.1  11.768  0.5369 3  

7.354  0.38  7.1  18.524   4  

 
Table 9 The voltage responses of the segmented electrodes and continuous electrode for the existence of 
concentrated mass at the tip of beam 

Voltage amplitude(mV) in the 
third mode 

Voltage amplitude(mV) in 
the second mode 

Voltage amplitude(mV) in the 
first mode 

ID 

1.21 2.149 3.15 1 
-0.4 0.407 1.69 2 

-2.39 -2.29 3.62 3 
3.405 -3.59 1.85 4 

2.2 -3.75 9.8 
Continuous 
electrode 

 
 

clamped end of the beam. Table 8 shows the dimensions and the electrical capacitance of the 
divided electrodes. The voltage responses are expressed in Table 9. The existence of a 
concentrated mass at the tip of the beam decreases the voltage response for the first three natural 
frequencies. 

Although the existence of the concentrated mass effects the location of the strain nodes, the 
voltage ratio (the voltage combination of segmented electrodes per the voltage of continuous 
electrode) does not change for the second and third natural frequencies. 

 
 

5. Results of generated power and voltage at off-resonant frequencies 
 
In this case, electrical energy is delivered to a resistive load. In the off-resonance case, the 

excitation frequency is considered to be far from the resonance frequency. The first off-resonant 
frequency is selected 240 Hz, which is less than the first natural frequency. The second off-
resonant frequency selected is 1250 Hz, which is less than the second natural frequency. The third 
off-resonant frequency selected is 4350 Hz, which is less than the third natural frequency. The 
output voltage and power depend on the resistance load. The optimum resistance changes 
according to the energy loss factor (Xu et al. 2013). The results of the power generated at the 
optimum resistive load are shown in Tables 10, 11, and 12 for both the continuous and the 
segmented electrodes at the first off-resonance frequency. According to the results, the power 
generated with the continuous electrode is more than 14 times the power generated from the 
segmented electrodes at the optimum resistive load at the first frequency. The power generated 
from the continuous electrode is more than 1.4 times the power generated from the segmented 
electrodes at the optimum resistive load at the second frequency. The power generated from the 
segmented electrodes is more than 1.7 times the power generated from the continuous electrode at 
the optimum resistive load at the third frequency. 
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Table 10 The results of the generated power in the optimum resistive load at the first off-resonance 
frequency 

The total power 
in the 

frequency 
240Hz 
*10-11 
(W)  

Maximum power 
in the frequency 

240 Hz
 *10-11 

(W) 

Electrical 
capacitance 
of the series 
connection 

Cs 

(nF) 

Resistive 
load in the 
frequency 

240Hz 
(Ω)  

Voltage 
amplitude in 
the frequency 

240Hz 
(mV) 

B ID Method 

0.3825  

0.065  1.05  631597.3 1.275 5.292  1  

Segmented 
electrodes 

0.01 0.672 986870.80.632  3.386  2  

0.19 2.22 298880.6 1.51 11.182 3  

0.1175 4 165794.30.881  20.14  4  

5.534  5.534  7.94  83523.6 4.3   -  
Continuous 
electrode  

 
Table 11 The results of the generated power in the optimum resistive load at the second off-resonance 
frequency 

The total 
power in the 

frequency 
1250Hz 
*10-11 
(W)  

Maximum power in 
the frequency 1250 

Hz
 *10-11 

(W) 

Resistive load in 
the frequency 

1250Hz 
(Ω) 

Voltage amplitude in the 
frequency 1250Hz 

(mV) 
ID Method 

1.07  

0.06  121266.5  0.528  1  

Segmented 
electrodes 

0.0012 189478.9  0.093  2  

0.146 57355.9  -0.58  3  

0.86 31832.5  -1.04  4  

1.55  1.55  16036.6  1  -  
Continuous 
electrode  

 
Table 12 The results of the generated power in the optimum resistive load at the third off-resonance 
frequency 

The total power in 
the frequency 

4350Hz 
*10-11 
(W)  

Maximum power in the 
frequency 4350 Hz

 *10-11 
(W) 

Resistive load in
the frequency 

4350Hz 
(Ω) 

Voltage amplitude in 
the frequency 4350Hz

(mV) 
ID Method 

1.04 

0.02  34846.5  0.167  1  

Segmented 
electrodes 

0.0012 54447.7  -0.0512  2  

0.18 16481.5  -0.341  3  

0.842 9147.3  0.555  4  

0.591 0.591  4608.2  0.33  -  
Continuous 
electrode  

 
 

The voltage amplitude of the segmented electrodes (ID 1, 2, 3, and 4) are shown in Fig. 15 for 
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6. Conclusions 
 
In this paper the cancellation phenomenon in power and voltage response in the piezoelectric 

energy harvesting is discussed. The existence of strain nodes effects cancellation of the voltage 
output. The vibration modes all have strain nodes except for the first frequency number. A bimorph 
cantilevered beam was used in both the continuous electrode example and the segmented electrode 
example. The effect of a concentrated mass at the tip of the beam was also considered. 

The behaviour of the harvester was verified in both resonance and off-resonance cases. In the 
case of excitation at the first natural frequency, the voltage response of the continuous electrode 
was comparable to that of the segmented electrodes in an open circuit state, while excitation at the 
second and third natural frequencies resulted in a decrease in the voltage output of the continuous 
electrode relative to the segmented electrode. 

Although the existence of the concentrated mass effected the location of the strain nodes, the 
voltage ratio (the voltage of the segmented electrode per the voltage of the continuous electrode) 
did not change at the second and third natural frequencies. 

The existence of a concentrated mass at the tip of the beam decreased the voltage response for 
the first three natural frequencies. 

In the off-resonance case, the excitation frequency was considered to be far from the resonance 
frequency. A circuit with a resistive load was applied to verify energy harvesting. The maximum 
value of electric power was obtained at the optimum resistive load for the selected frequency 
value. Hence, the optimum resistive load was selected according to the excitation frequency and 
capacitance. Three of the excitation frequencies applied were lower than the first three natural 
frequencies. 

The results demonstrated that the behaviour of the power generated in the off-resonance modes 
for the continuous electrode case and the segmented electrode case were different. 

The power generated in the first off-resonance mode (lower than the first natural frequency) in 
the case of the continuous electrode was greater than that of the segmented electrode. In the second 
off-resonance mode (lower than the second natural frequency), the generated power for the 
continuous electrode case was comparable to that of the segmented electrode. In the third off-
resonance mode (lower than the third natural frequency), the generated power for the continuous 
electrode case was less than that of the segmented electrode.  
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