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Abstract.  In this paper an electromechanically coupled isogeometric finite element is utilized to analyse 

Lamb wave excitation with piezoceramic actuators. An effective actuator design reduces the energy needed 

for Lamb wave excitation, which is beneficial if a structural health monitoring system should be applied for 

a structure. For a better understanding of the actuator behavior the piezoeceramics are studied both free and 

bonded at a structure. The numerical part of the analysis is performed utilizing isogeometric finite elements. 

To obtain the optimal performance for the numerical analysis the effect of k-refinement of the isogeometric 

element with respect to the convergence is studied and discussed. The optimal numerical setup with the best 

convergence rate is proposed and is validated with free piezoeceramic actuators. The validated model is then 

utilized to study the impact of actuator shape and adhesive bondline effect to the wave amplitude. The study 

shows that simplified analytical equations do not predict the optimal excitation frequencies for all 

piezoceramic designs accurately. 
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1. Introduction 
 

Lamb wave based structural health monitoring systems are one promising approach to monitor 

thin walled structures, e.g., aeroplanes Boller et al. (2009), Giurgiutiu (2008). Lamb waves are 

ultrasonic waves and therefore interact with damages Mook et al. (2003). They are characterized 

by a low geometrical attenuation (1/√r) Su and Ye (2009). Therefore they are promising for 

monitoring large areas of light weight CFRP (composite fiber reinforced plastics) structures, e.g., 

wings of airplanes, because it is possible to monitor great distances or surfaces with a relatively 

low number of sensors and actuators. However, Lamb waves have complex properties, e.g., they 

are dispersive, occur in at least two basic modes (symmetric and anti-symmetric) and under special 

conditions these modes can convert into each other. For a conversion between the symmetric and 

anti-symmetric mode the wave has to travel through a discontinuity, which is not symmetric to the 

center plane of the wave and vice versa Ahmad and Gabbert (2012), Willberg et al. (2012b). 
Numerous modeling approaches have been developed to describe the complex properties of  
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Lamb waves efficiently, Willberg et al. (2015). One of these approaches is the so called 

isogeometric element concept. This concept wants to close the gap between computer aided design 

(CAD) and finite element analysis (FEA) to reduce the modeling effort Hughes et al. (2005). The 

reduction of the meshing time and an accurate description of the geometry increase the efficiency 

of numerical simulations. By assuming accurate so called water-tight geometrical decription from 

a CAD tool the isogeometric concept utilizes the functional description of the geometry from the 

CAD software (B-splines, NURBS, T-splines, etc.) and reuses them as shape function for the FEA 

Cottrell et al. (2009). Assuming that in the near future the application of isogeometric elements 

will be common, then also special multi-physics finite elements are required, e.g., for the 

simulation of piezoelectric smart structures. The development of an isogeometric piezoelectrical 

element has been done by Willberg and Gabbert (2012). It has been shown that this isogeometric 

element needs a lower number of degrees of freedom due to its exact geometrical description. For 

a dynamic analysis the performance of a two-dimensional isogeometric finite element has been 

studied by Willberg et al. (2012a). In this study compared to other higher order approaches 

isogoemtric finite elements show better convergences. Therefore, a lower number of degrees-of-

freedom is needed to reach the same accuracy as other higher order element and as result it leads 

to an increase in memory efficiency. On the contrary the time integration strategy has to be 

improved because, to the authors knowledge, no method for mass matrix diagonalization for 

isogeometric elements exists which lead to accurate results for higher frequencies. Adam et al. 

(2015) analyzes several lumping strategies, but for greater eigenfrequencies the eigenmodes show 

errors and the accuracy decreases. Although the memory cost is lower the computational time is 

not reduced compared to spectral finite elements. To understand reason of the better convergence 

rate of the isogeometric element the effect of the inter-element-continuity is studied. With the 

effective modeling approach the behavior of the actuator due to Lamb wave excitation is studied. 

The results are based on the experimental findings of Pohl et al. (2012). The piezoelectrical finite 

element is validated with experimental data of several unbounded piezoceramic actuators by 

analyzing the eigenfrequencies and eigenmodes. In the last part a two-dimensional analysis is 

performed to study the effect of stiffness, geometry and adhesive layer variation.  

The paper is structured as following. First, the isogeometric piezoelectric finite element is 

derived. Second the effect to the convergence due to k-refinement is analysed. Third, the 

experimental findings of Pohl et al. (2012) are briefly introduced to motivate the further analysis. 

In the fourth section the paper is concluded. 

 
 

2. Theoretical background 
 
The derivation of the piezomechanical isogeometric finite element has been adopted from 

Willberg and Gabbert (2012). In this section the material law, the basic finite element equations 

and the non-uniform rational B-spline (NURBS) representation are introduced. The isogeometric 

finite element is derived for small deformations and linearized material behavior. 

 
2.1 Isogeometric piezomechanical model 
 
Piezoelectric materials are able to transform mechanical deformation in electrical voltage 

(direct piezoelectric effect) and vice versa (converse piezoelectric effect). To model a piezoelectric 

elastic material in a low voltage range, the linearized piezoelectric constitutive equations are 
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sufficient to describe the coupled electromechanical behavior Ikeda (1996). The linearized 

piezomechanical material law can be written as 

        , (1) 

         . (2) 

The parameters ,σ ,ε ,E ,D ,E
S d  and 

e  are the mechanical stresses, the mechanical strains, 

the electric field, the electrical displacement, the elastic compliance matrix measured at constant 

electric field, the piezoelectric coupling matrix and the permittivity measured at constant 

mechanical stress, respectively. The mechanical strain is related to the displacement u as uε D , 

where D is the differential operator. The electric field is defined as the gradient of the electrical 

potential Φ  as 

   g     (3) 

Based on this material law the isogeometric finite element formulation can be derived. The 

difference to the equally formulated standard finite elements is the NURBS shape functions. 

 

2.1 Isogeometric finite element formulation 
 

The equations of motion of a piezoelectric continuum can be derived using Hamilton's 

principle, which states that the motion of the system within the time interval  21 tt ,  is such that the 

variation of action vanishes, i.e., the motion of the system takes the path of stationary action 

Marinkovic et al. (2006) 

 ∫     

  

  

     (4) 

where 

  
 

 
∫   ̇  ̇             (5) 

represents the Lagrangian of the system and includes the kinetic energy as well as the potential 

mechanical and electrical energies. The external work W is given as 

  ∫       

 

 ∫        
  

 ∑  
    

 

   

∫        

  

 ∑    

 

   

 (6) 

and includes all external loads and external electrical charges. The vectors FV, FS1, Fi are given 

mechanical loads related to a volume V, to a surface S1 and to an element node (a control point for 

an isogeometric element) i, respectively. The scalar values QS1 and Qj are the electric charge 

related to a surface S2 and to an element node (a control point for an isogeometric element) j. The 

vector u contains the unknown mechanical displacements and Φ  describes the unknown 

electrical potential. After substituting Eqs. (5) and (6) into Eq. (7) and rearranging the expression 

we obtain the variational formulation in the form Samal et al. (2005)  
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       ∑   
   

 

   

 ∫    

  

       ∑     

 

   

 

(7) 

where the vector u  is the the acceleration. The material matrices C
E
=(S

E
)

-1
 and e=C

E
d are the 

elasticity matrix and the matrix of piezoelectric coupling constants, respectively. 

When using the finite element approach, a continuous body is discretized in small subdomains. 

All displacement and electrical potential fields are approximated within each local domain. The 

displacements u and the electrical potential Φ  in a local domain (element) can be expressed in 

terms of the nodal displacements and the nodal electrical potentials (Ucont, cont) and the matrices 

of the mechanical and electrical interpolation functions (Hu, H) as Zienkiewicz and Taylor (2000) 

          and           (8) 

This formula is similar to the geometrical description of NURBS shown in Eq. (14). In an 

isogeometric element non-uniform rational B-splines (NURBS) are used as shape functions and 

the nodal displacements and the nodal electrical potentials correspond to those at the control 

points. 

The deflections and the electrical potentials at any point of the finite element of the structure 

can be obtained using Eq. (8). Substituting Eq. (8) together with Eq. (1) and Eq. (2) into the 

variational formulation Eq. (7), results in the discretized form of the equations of motion of a 

piezoelectric continuum 

    ̈                            (9a) 

                       (9b) 

As already mentioned the matrices of the mechanical and electrical interpolation functions (Hu, 

H) (see Eq. (8)) contain NURBS as shape functions needed to formulated the isogeometric finite 

element. NURBS have several advantages in describing curved geometries Willberg and Gabbert 

(2012). They are derivable with a defined non-uniform knot vector V, B-spline basis function Ni, p, 

weights parameters wi and control points Pi. A B-spline basis is comprised of piece-wise 

polynomials joined with prescribed continuity conditions. To define a B-spline of polynomial 

order p in one dimension one needs to understand the notion of a knot vector. A knot vector is a set 

of coordinates in a parametric space, written as 

  [                              ] with          (10) 

where i is the knot index, i=0, 1, ..., ncont+p+1, i is the i
th
 knot and ncont is the total number of 

control points Bazilevs (2006). There are various ways to define B-spline basis functions, but for 

computer implementation the application of a recurrence formula is the most common way de 

Boor (1972). The first order basis functions Ni, 0() of polynomial degree p=0 are 

        {
  if   ∈ [        
  othe wise.

 (11) 
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The basis functions Ni, p() of higher order p>0 are defined as 

        
    

       
          

        

           
             (12) 

where the indices i and p denote the ith basis function of polynomial order p. Utilizing the B-spline 

basis functions Ni, p(), the NURBS basis function Ri() can be defined as 

  
     

         

∑          
     
   

    (13) 

where wi is a weight corresponding to the i-th B-spline basis function Ni,p. An arbitrary NURBS 

curve can be described as Piegl and Tiller (1995) 

     ∑   
      

     

   

   (14) 

The vector X is the position vector of the described curve. Pi are control points in global 

cartesian coordinates [x1, x2, x3]. A NURBS curve can be interpreted as projection of a B-spline 

curve from 1n  to a defined surface in n  Cottrell et al. (2009). NURBS are projective 

invariant and if the weights are non-negative the curve lays in the convex hull of the control 

polygon Bazilevs (2006). This projection is controlled by weight parameters wi. The derivatives of 

the NURBS basis functions needed for the finite element formulation are given as Piegl and Tiller 

(1995) 

 

  
  

       

        
                 

    
    (15) 

with 

     ∑          

     

   

 (16) 

and 

    
     

 

       
          

 

           
             . (17) 

For a two or three dimensional finite element two or three dimensional NURBS formulation is 

needed, given by Cottrell et al. (2009). 

 

 

3. Influence of the inter-element-continuity to the convergence rate 
 

In previous studies done by Willberg et al. (2012a) the improved convergence rate of 

isogeometric finite elements by simulating Lamb waves have been shown. 

In this study the C
p-1

-continuous elements have been utilized. In this section the impact of the 

inter-element-continuity or k-refinement on the convergence rate is investigated. The setup is equal 

to the previous studies done by Willberg et al. (2012a). The model is given in Fig. 1. 

The frequency has been chosen as f=477.5 kHz. In this frequency range (for a plate thickness 
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Fig. 1 Two-dimensional model with loads and boundary conditions for the convergence study. 

Two point forces )2(t)sinsin( 2
1 nt/FtF ˆ)(  and )()( taFtF 12   are applied, with a=1 for the 

excitation of a purely symmetric Lamb wave mode (S0) and a=-1 if the anti-symmetric mode (A0) 

is considered. The dimensions of the aluminium (see Table 5) plate are : la=100 mm, lb=200 mm, 

lp=500 mm, h=2 mm 

 

 

of h=2 mm) the dispersion, describing the frequency-dependence of both the group and phase 

velocity is low for the fundamental Lamb wave modes. 

To determine the quality of the finite element solution the time-of-flight tc of the propagating 

Lamb wave package between the points A and B is utilized. To get a defined package position a 

Hilbert transformation is performed to calculate an envelope at both positions A and B. The 

centroids of these envelopes are defined as the position of the wave package Willberg et al. 

(2012a). With this definition the time-of-flight computed using the finite element method (tcnum, 

type) is compared to the value given by the analytical solution (tcana). Basically using this 

methodology the comparison of time-of-flights equals the evaluation of resulting group speeds, 

since dispersive effects are almost excluded due to the narrow bandwidth of the excitation signal 

and due to the constant distance between the evaluation points. However, the remaining small 

dispersive effects enter the analytically (tcana) and numerically (tcnum, type) computed time-of-flight 

parameters to an equal extent, hence the presented convergence indicator is able to quantify the 

Lamb wave behaviour even for very low orders of the errors magnitude. 

 

 

 
(a) A0-mode (b) S0-mode 

Fig. 2 Convergence curve of isogeometric elements with C
1
-continuity (px3=4) 
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For the study of the k-refinement convergence effects, the polynomial order in thickness 

direction is chosen as px3=4. If a polynomial degree px3=4 keep locking to a minimum and greater 

polynomial degrees does not lead for the chosen frequency to an error reduction Willberg et al. 

(2012a). Two different inter-element-continuities in x1-direction are chosen; C
1
- and C

0
-continuity. 

The C
0
 -continuity corresponds to the standard finite element inter-element-continuity, meaning 

that no jumps in the displacement functions occur. 

Fig. 2 shows the result of the convergence test for the C
1
-continuous isogeometric finite 

elements. As reference the convergence curve of the spectral finite elements (SEM) with the 

optimal polynomial degree px1=3 (minimal memory effort to reach a 1% error for the time of 

flight) is plotted Willberg et al. (2012a). These elements have been chosen because they are 

commonly used for higher order Lamb wave simulation. Due to their formulation a lumped mass 

matrix is obtained which has advantages for the time-integration Duczek (2014). The convergence 

rate for the A0- as well as the S0-mode are lower in comparison to C
p-1

-continuous isogeometric 

elements, compare with Willberg et al. (2012a), cf. Fig. 4. They are steady and have no peaks. The 

convergence of the isogeometric elements of order px1=3 are almost equal to the reference curve of 

SEM of the same order. Due to the difference in polynomial order as expected the accuracy of the 

isogeometric element in comparison to the SEM elements is for px1=2 and for the polynomial 

degree px1=5 the accuracy is higher compared to the SEM elements. For an equal polynomial 

order (px1=3) the accuracy of the isogeometric finite elements are slightly lower compared to the 

SEM, but the maximum accuracy is equal for both formulations. 

Fig. 3 illustrates the results of the C
0
-continuous isogeometric elements. The curves are steady 

except the peak for px1=3 in the A0-mode curve. This behavior can be attributed to local element 

eigenfrequencies and correlate to the peak in the SEM curve Schmicker et al. (2014). Again the 

convergence rate of order px1=3 of the A0- and S0-mode is almost similar to the reference SEM 

convergence, but the accuracy of the isogeometric finite elements is lower until they reach the 

maximum accuracy. 

Generally, isogeometric finite elements with a lower inter-element-continuity exhibit worsened 

convergence compared to a C
p-1

-continuous element. Also the element eigenfrequency effects 

described by Schmicker et al. (2014) occur. The maximum achievable accuracy of lower inter-

element-continuity elements is not improved and equal to C
p-1

-continuous elements. Fig. 4 

 

 

 
(a) A0-mode (b) S0-mode 

Fig. 3 Convergence curve of isogeometric elements with C
0
-continuity (px3=4) 
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(a) A0-mode (b) S0-mode 

Fig. 4 Convergence curve of isogeometric elements with inter-element- different continuity (px1=3, px3=4) 

 

 

illustrates this conclusion for a polynomial degree of px1=3. For C
1
 and C

0
 inter-element-continuity 

no improvement in convergence is reached in comparison to the spectral finite element solution of 

equal order. 

Therefore, C
p-1

-continuous isogeometric finite elements are to be preferred when dealing with 

Lamb wave propagation. This statement agrees with Evans et al. (2009) for a theoretical 

approximation analysis which said that a numerical comparison of the classical finite element and 

k-refinement methods revealed that the k-method has better approximation properties than the 

classical finite element method on a per degree-of-freedom basis, further suggesting that the k-

refinement method is an accurate and robust scheme for approximating solutions to partial 

differential equations. These results are consistent with observations made previously based on 

discrete Fourier analysis and the numerical solutions of boundary value problems. 

 
 

4. Actuator behavior 
 

The vibration of a free-free piezoceramic discs is measured and compared with a three-

dimensional isogeometric finite element model solution. The resonance frequencies as well as the 

modeshapes (visually) are compared. This analysis is used to validate the three-dimensional IGA 

model. The general mode shapes are the same for the coupled and free disc case. The analysis is 

motivated by the excitation of Lamb waves. Therefore, a frequency range 10 kHz≤f≤300 kHz is 

chosen, because for 2 mm plate thicknesses no higher order Lamb wave modes occur. 

The eigenmodes of a general circular plate can be separated in different types. Tangential 

modes, which are described by Huang et al. (2004) are excluded here since they have a weak 

appearance. Also the thickness modes are not considered. For piezoceramic plates with thicknesses 

less than 2 mm considered here they occur at frequencies higher than 1 MHz PIC. These 

frequencies are outside the investigated frequency domain 10 kHz≤f≤300 kHz. Only bending and 

radial modes are studied in this investigation. If the piezoceramic is applied to a structure these 

types of eigenmodes will primarily activate Lamb waves. Moreover, both mode types exist in the 

regarded frequency domain where only the two basic Lamb wave modes arise. Fig. 5(a) displays 

the used coordinate system and the direction of the polarization of the piezoceramic discs of  
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(a) Coordinates of the piezoceramic disc of 

diameter d and thickness h 

(b) Example for a real piezoceramic disc (d=10 

mm, h=0.5 mm, PIC-181) 

Fig. 5 Uncoupled piezoceramic disc 

 
Table 1 Comparison of measurement (M.) of free piezoceramics with the isogeometric solution (S.) (1 - PIC-

151, d=10 mm, h=1 mm; 2 - PIC-181, d=10 mm, h=0.5 mm; 3 - PIC-181, d=10 mm, h=2 mm; 5 - PIC-181, 

d=16 mm, h=1 mm; 6 - PIC-181, d=16 mm, h=2 mm; 7 - PIC-151, d=40 mm, h=0.5 mm) 

 S. M. 1[kHz] 2[kHz] 3[kHz] 4[kHz] 5[kHz] 6[kHz] 7[kHz] 

M. 

  

28.9 17.7 38.8 59.7 12.9 23.4 - 

S. 27.3 16.7 32.4 58.6 12.97 24.7 0.8 

M. 

  

58.1 33.2 63.1 109.5 24.3 48.1 1.9 

S. 53 32.2 61.4 106.1 24.9 46.4 1.77 

M. 

  

63.5 40.1 74.4 123.3 29 55.3 2.05 

S. 60.9 38.6 72.1 120.7 29.7 54.1 2.1 

M. 

  

106.8 68.1 124 192.1 49.4 90.4 3.7 

S. 101.8 66.9 120.6 187.9 51.1 88.6 3.7 

M. 

  

117.5 72.5 132.2 199.6 53.2 95.8 4.15 

S. 107.3 69.6 125.2 191.3 53.4 91.4 3.9 

M. 

  

156.6 103.5 179.7 263.5 74.6 129.8 5.5 

S. 147.8 101 175 257.3 76.4 126.1 5.7 

M. 

  

192.1 119.6 205.5 295.8 86.5 149 6.9 

S. 168.2 115.2 197 276 86.9 140.7 6.6 

M. 

  

204.5 128.7 222 - 95.2 161.3 7.6 

S. 192.9 126.8 215 301.8 95.5 153.7 7.3 

 

 

diameter d and thickness h. To measure the eigenfrequencies a linear chirp signal is generated 

utilizing the piezoceramic actuator. The piezoceramic disc is mounted on foam (free) and the 
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response of the structure is measured at the bottom surface. Fig. 5(b) shows an example of a free 

disc made of PIC-181 with the wire and the soldering points at the top surface and a diameter d=10 

mm and a thickness h=0.5 mm. The numerical model neglect soldering points and only the pure 

circular disc comparable with Fig. 5(a) is modeled. 

The eigenfrequencies        utilizing the isogeometric finite elements are calculated as 

(                
    ) ̂    (18) 

Û  is the eigenvector, K is the stiffness matrix and M is the mass matrix. The indices uu, u, 

u and  denote displacement-displacement, displacement-electrical potential, electrical 

potential-displacement and electrical potential-electrical potential, respectively (see Eq. (9a) and 

Eq. (9b)). 

 

4.1 Bending modes of the piezoelectric circular plate 
 

Seven piezoceramic discs are studied with different material properties as well as different 

geometries. The material properties of PIC-151 and PIC-181 are given in Table 6. The out-of-plane 

component of the velocity of the bottom surface of each disc is measured after applying the 

external broadband signal. Therefore, no wire or soldering point disturbs the laser beam. Table 1 

shows seven measured bending modes compared with an isogeometric finite element solution. The 

dominant displacements are in x3-direction. It must be noted that the wire and soldering points 

which are illustrated in Fig. 5(b) have only a low influence on the eigendynamic of the discs 

Willberg et al. (2009). Therefore, they are not included in the numerical model. Nevertheless, the 

results in Table 1 show a good agreement (error is smaller than 10% with respect to the numerical 

solution with exception of one result) between the simulations (S.) and the measurements (M.). 

The sequence of the mode appearance as well as the mode shapes is similar. 

 
4.2 Radial modes of the piezoelectric circular plate 
 
For the comparison of the radial modes with the experimental and the isogeometric results an 

analytical solution has been used. The radial eigenfrequencies fj correspond to eigenvalues of the 

characteristic equation of the analytical solutions. The eigenvalues are only dependent of the 

Poisson’s ratio of the x1-x2-plane 12. For a Poison’s ratio of 12=0.34 the first four eigenvalues zj 

are given by Giurgiutiu (2008) as 

z1=2.074; z2=5.397; z3=8.576; z4=11.73 

With the values of zj the eigenfrequencies fj can be directly calculated as  

   √
 

   
     𝜈  

  

𝑧 

   𝑎 
 (19) 

The experimental identification of the radial modes has been done using 3D scanning laser 

vibrometry measurements. An example is shown in Fig. 6. All three spectra and the corresponding 

in-plane mode shape are plotted. The graphs show that the in-plane modes also produce 

remarkably high secondary out-of-plane components. It has been observed that even in out-of- 

plane spectra measured with a 1D vibrometer radial mode peaks are to be observed (cf. Fig. 6(c)). 
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(a) u1-displacement (b) u2-displacement 

 

(c) u3-displacement 
(d) Measured mode shape 𝑢 𝑎𝑔  √𝑢 

  𝑢 
 ; 

f=222 kHz 

Fig. 6 3D measurement of a piezoceramic (d=10 mm, h=0.5 mm, PIC-181) 

 

 
(a) Radial mode 1 (b) Radial mode 2 

Fig. 7 First in-plane eigenmode of the analytical solution Table 2 of an undisturbed piezoceramic 

 

 

In those cases it is not possible to correlate a fundamental bending mode shape shown in Table 1 

(and higher ones too) to the measured peaks. The isogeometric simulations show that many 
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bending modes coexist around the higher resonance frequencies of the first radial mode. This is 

also validated by the experimental results. A splitting of the mode types by 1D (out-of-plane) 

measurements is not possible. If the in-plane components are observed, the mode shape of an in-

plane mode can be seen (cf. Fig. 6(d)). Fig. 7 shows the eigenform of the eigenfrequencies plotted 

in Table 2. Due to ideal symmetry for the numerical or analytical model two modes with the same 

frequency exists, cf. Fig. 7. 
Because, knowing the in-plane spectra are sometimes not enough to identify the radial 

eigenfrequencies without a doubt, additional measurements have been done. Following Huang et 

al. (2004) only in-plane and thickness modes cause resonance peaks in the spectrum of electrical 

impedance. The resonance values obtained by the impedance measurements are given by Pohl et 

al. (2012). The analytical as well as the isogeometric finite element solution determine all first 

radial modes correctly. Moreover, as Eq. (19) states, a change of the height of the piezoceramic 

disc has no influence on the resonance frequencies. Both, the experiments and the isogeometric 

finite element results show such behavior. 

 
4.3 Vibration of the coupled piezoceramic actuator 
 
The design of a piezoceramic patch actuator for structural health monitoring applications 

should guarantee a most effective Lamb wave generation. According to Kessler et al. (2002) and 

Su et al. (2006) the most effective generation of Lamb waves is accomplished, if the actuator 

length or diameter d, respectively, is related to the wave length in the following manner 

       .  . (20) 

 describes the wavelength of the regarded Lamb wave mode and n is an arbitrary integer n=0, 1, 

2, …). To investigate the resonance effects a CFRP plate with a [(0/90)_f/+45/-45/(0/90)f]Sym layup 

 

 
Table 2 Comparison of the experimental data (3D vibrometry and impedance measurements) with the 

analytic solution of the radial eigenfrequencies 

Diameter 

[mm] 
Material 

Height 

[mm] 

Analytical 

[kHz] 

Numerical 

[kHz] 

3D vibrometer 

[kHz] 

Impedance 

[kHz] 

10 PIC-151 1 190.77 192.9 195 195 

40 PIC-151 0.5 47.69 48.4 - 49 

10 PIC-181 0.5 228.32 233.7 222 225 

10 PIC-181 1 228.32 233 225 224 

10 PIC-181 2 228.32 230.3 224 223 

 
Table 3 Optimal frequencies for Lamb mode generation in a CFRP plate up to 500 kHz in 0°-direction 

Willberg et al. (2013) 

n  [m] f of A0 [kHz] f of S0
 
[kHz]

 

0 0.0200 40.7 276 

1 0.0067 186 >500 

2 0.0040 335 >500 

3 0.0029 480 >500 
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and a plate thickness of 2 mm is examined. Table 3 shows the first four optimal wavelengths for 

this CFRP plate. The values are determined using Eq. (20) in combination with the measured 

dispersion curves to get the frequencies which are corresponded to the wavelengths  Pohl et al. 

(2012). The experimental investigation has been done between 0 and 500 kHz. Only one optimal 

excitation frequency of the S0-mode and three for the A0-mode are within the considered frequency 

range. 

Circular shaped piezoceramic actuators with three different heights (0.5 mm, 1 mm, 2 mm) and 

a diameter d=10 mm are glued on the CFRP plate. A linear swept-frequency cosine signal is used 

to excite Lamb waves with multiple frequencies. Two measurements are performed for each 

piezoceramic. First the surface of the ceramic is scanned to gain the frequency response of the 

ceramic. The second measurement measures the CFRP plate. The measurement has been done 

avoiding reflections from the edges. By taking the wave numbers of the A0- and S0- mode it 

ispossible to plot the frequency response spectra of each mode. Therefore, a 3D FFT is performed 

on the data of the measured C-scan of the laser vibrometer to detect the temporal periodicities 

(frequencies) and the spatial periodicities (wave numbers) of the propagating signals Alleyne and 

Cawley (1991). In doing so the separated frequency amplitude curve can be determined. 

 

 

 
(a) S0-mode spectra (b) A0-mode spectra 

 
(c) Spectra of piezoceramic disc 

Fig. 8 Spectra for the Lamb wave modes for a CFRP plate and different piezocermic discs - Type 1 (d=10 

mm, h=0.5 mm), Type 2 (d=10 mm, h=1 mm) and Type 3 (d=10 mm, h=2 mm) 
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(a) Phase velocity (b) Group velocity 

Fig. 9 Dispersion curves of CFRP plate with a [(0/90)_f/+45/-45/ (0/90)f]Sym layup Ahmad (2011) 

 

 

If Eq. (20) holds the A0-mode experiences a first maximum at 40.7 kHz and the S0-mode at 276 

kHz. The experimental results are displayed in Fig. 8(a)-8(c). The noise in the S0-mode spectra are 

caused by the great wavelength and the small displacement in x3-direction. The different curves 

from Fig. 8 show a close relation between the resonances of the piezoelectric actuators and the 

spectra of the Lamb wave modes. The frequencies corresponding to certain values of Lamb wave 

wavelength for the CFRP plate have been derived from Eq. (20) and are given in Table 3 for 

frequencies up to 500 kHz both for the S0- and A0-mode, cf. Fig. 9 for the corresponding 

dispersion curves. Comparing the measured resonance frequencies (Fig. 8) with the calculated data 

from Table 3 it can be concluded that Eq. (20) cannot be applied for thicker piezoceramic 

actuators. For example for a frequency of f=335 kHz an optimal excitation for the A0-mode should 

occur. Only the type 1 piezoceramic shows a maximum. It is evident that the eigenfrequencies of 

the actuator in connection with the structure have a major impact on the excited Lamb wave 

amplitudes. The assumption that an optimal excitation of Lamb modes occurs if the diameter of 

the piezoceramic disk is one half of an integer number of the wavelengths does not hold under any 

circumstance Pohl et al. (2012). Only for thin ceramics it can be confirmed that the lowest 

eigenfrequency calculated with Eq. (20) coincides with the measurements. In all other cases no 

agreement with measurements could be observed, meaning that the application of Eq. (20) to 

estimate optimal excitation frequencies cannot be recommended. 

For SHM systems the application of higher frequencies are preferable due to an improved 

resolution and a better ability to detect damages. The resonances play a major role in the excitation 

of Lamb waves. For thicker piezoceramics it is the dominant effect which influences the 

amplitudes of the excited Lamb waves Ha (2010), Mohamed et al. (2011). This effect can be used 

to reduce the input energy of the actuators. The adhesive layer as mentioned before shifts the 

position of the resonances. Therefore, a tuning of the optimal frequency should be applied to 

receive an optimal excitation. 

 

4.4 Influence parameters to the Lamb wave excitation 
 

The experiments have shown that the resonances of the coupled piezoceramic actuator have a  
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Fig. 10 Two-dimensional symmetric model, used to investigate the influence of the bonding layer to the 

Lamb wave excitation (actuator: PIC-181; adhesive layer: paraffin wax; plate: aluminum Y=7∙10
10 

N/m
2
, 

=0.33$, lpl=0.6 m, hpl=2 mm); the results are being measured at a point located at a distance of lm=50 mm 

from the actuator 

 

 

dominant influence on the excited Lamb waves. In this section the parameters which influence the 

resonance of the actuator-adhesive layer-host structure system are studied. To investigate the 

parameters a two-dimensional isogeometric finite element model is created (see Fig. 10). The 

findings presented in section 3 are used and the optimal discretization scheme is applied to reduce 

the numerical effort and to gain a good accuracy Willberg et al. (2012a). 

Several parameters are varied to study their influence on the resonance of the actuator and the 

A0- and S0-mode spectra. The parameters are: 

• the thickness of the adhesive layer, 

• the Young’s modulus of the adhesive layer, 

• the thickness of the actuator, 

• the length of the actuator and 

• the Young’s modulus of the plate. 

The geometry of the plate remains the same for all simulations. The non-varied properties of 

the model are given in Table 4. In all given models the rest of the parameters are chosen as in the 

Table 4. 

At the left side of the model (cf. Fig. 10) symmetric boundary conditions (u1(x1=0, x2)=0) are 

applied to reduce the numerical effort. The actuator is made of the piezoelectric material PIC-181 

(see Table 6), the plate consists of aluminum (see Table 5) and the adhesive layer is made of 

paraffin wax (see Table 7). The model is defined by the plate thickness hpl, the plate length lpl, the 

actuator thickness hac, the actuator length lac, the adhesive layer thickness had and the adhesive 

layer length lad. 

At the top surface of the piezoceramic actuator a constant electrical potential is applied. At the 

 

 
Table 4 Properties of the model in Fig. 10 

Parameter Length [mm] Height [mm] Material 

pl 600 2 Aluminium (Table 5) 

ac 5 1 PIC-181 (Table 6) 

ad 5 0.05 paraffin wax (Table 7) 
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bottom surface of the actuator the electrical potential is set to zero. A broad-band excitation signal 

(linear chirp) 

𝜙    𝜙̂sin [  (   
     

  
 )  ] (21) 

is used. The start frequency f0 and end frequency f1 are chosen as f0=10 kHz and f1=500 kHz. The 

time is given as t1=1/f0. 

The displacements of the top surface of the piezoceramic actuator and the displacements of a 

top (x3=+hpl/2) and a bottom (x3=-hpl/2) node of the plate in a distance lm=50 mm are monitored. 

The average displacement of the top surface of the piezoceramic is used to determine the spectrum 

of the applied actuator. The displacements of the top and bottom node of the plate are used to 

separate the two Lamb modes from each other without performing a 2D FFT. After applying a FFT 

to the time-dependent data, three spectra are gained similar to Fig. 8. 

Fig. 11(a)-Fig. 11(c) show the simulated u3-displacement spectra of the two-dimensional model 

of the two basic Lamb wave modes and the piezoceramic actuator. The model is defined as 

illustrated in Fig. 10 and Table 4 without varied parameter. As illustrated in the experimental 

investigation in the previous section there is a dominant coupling between the actuator 

eigendynamic and the excited Lamb waves. As in the experiments the A0-mode is strongly 

influenced by the low frequency peaks in the piezoceramic spectrum. This is an indicator for the 

existence of bending modes in this frequency domain. As shown in the previous section these 

eigenmodes have a greater influence on the A0-mode than on the S0 one. On the other side, the first 

in-plane eigenmode (radial mode for circular shaped actuators in 3D) at f=237 kHz has a strong 

impact to the symmetric S0-mode which leads to a high peak in the spectrum on the symmetric 

mode. 

All of the described effects occur (occurrence of in-plane and bending modes of piezoceramic 

actuators) in each cutting plane perpendicular to the surface of the plate. Therefore, it can be said 

that the general properties of the coupled actuator-structure system in comparison of the numerical 

and experimental results can be described by a simple two-dimensional model. 

 

 

 
(a) S0-mode spectrum (b) A0-mode spectrum 

Fig. 11 Spectra of u3-displacement of the two-dimensional model without parameter variation 
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(c) Spectrum of piezoceramic disc 

Fig. 11 Spectra of u3-displacement of the two-dimensional model without parameter variation 

 
 
4.4.1 Influence of the adhesive layer 
The impact of the adhesive layer to the coupling between an actuator and a structure is well 

known for thin piezoceramic patches. If a patch actuator is glued to the surface of a structure the so 

called “shear lag” effect can be observed. The “shear lag” is caused by an adhesive layer of finite 

thickness between the actuator and the host structure (see Fig. 12). The excitation signal from the 

actuator is transmitted to the structure through interfacial shear stresses within the bonding layer 

for the most part Sohn and Lee (2010). The “shear lag” causes a reduction of shear strain transfer 

between the PZT actuator and the host structure. With a lower shear modulus and a thicker 

adhesive layer, the “shear lag” effect becomes more pronounced. As a result, the signal amplitude 

is reduced significantly if the resonance effects play a minor role Ha (2009). Due to this effect the 

effective length of a piezoelectric actuator is smaller than the actual length. Consequently, it can be 

assumed, that only a fraction of the actual surface of a piezoelectric actuator contributes to the 

strain transfer. Thus, correction factors have to be applied in order to account for the “shear lag” 

effect. Based on analytical models (e.g., Euler-Bernoulli beam theory) 

Correction factors for various problems assuming the application of thin piezoceramics (≈0.2 

mm) only have been derived in Crawley and de Luis (1987), Giurgiutiu (2008), Sirohi and Chopra 

(2000). 

For thicker piezoceramics the resonances of the coupled actuator-structure system play a more 

important role and superimpose the “shear lag”' effect. Moreover, the assumptions made by the 

Euler-Bernoulli beam theory are not fulfilled in the case of thick ceramics and the correction 

 

 

 
Fig. 12 Schematic representation of the “shear lag” effect 
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factors can be overestimated. Therefore, two parameters of the adhesive layer are varied to study 

their influence to the first resonance of the S0-mode. 

The A0-mode spectrum has no clear first resonance peak caused by the first in-plane mode of 

the piezoceramic. This mode is influenced by the bending modes as well as the in-plane modes. 

Because, both modes are affected differently by a parameter variation the analysis has been shown 

that the equal resonance peak of the A0-mode is harder to find for the variations compared to the 

S0-mode spectra, cf. Fig. 11(a). Therefore, the movement of the resonance peak in the A0-mode 

spectrum caused by the in-plane mode is hard to determine and no analysis of this spectrum has 

been done. 

 

Adhesive layer thickness: The adhesive layer thickness had is varied between 

   𝜇m…    𝜇m. The change in the first resonance frequency as well as the amplitude of this 

excitation frequency is observed for the S0-mode. Fig. 13(a) shows the frequency of the first peak 

in the S0-mode spectrum as a function of the adhesive layer height. The frequency decreases for a 

greater adhesive layer thickness. As illustrated before, for the experimental model in Fig. 8 and the 

numerical model in Fig. 11, there is a connection between the dynamic behavior of the 

piezoceramic actuator and the spectra of the two Lamb wave modes. Because the coupled actuator-

structure system becomes softer the resonance frequencies of the actuator shift to a lower 

frequencies. 

The amplitude of the resonance peak increases (see Fig. 13(b)). This disagrees with the “shear 

lag” effect, which states that higher thicknesses lead to a reduction in the amplitudes of the excited 

Lamb wave modes. The amplitude curve is not steady because near the first in-plane 

eigenfrequency other peaks occur. The in-plane mode is superposed by bending modes. Both mode 

types are influenced differently by the adhesive layer height and depending on how similar the 

resonance frequencies of both mode types are, the amplitudes increase or decrease. However, only 

great changes (   𝜇m or more) in the adhesive layer thickness lead to a noticeable change in 

frequency and amplitude. Therefore, the adhesive layer thickness could be used in the design 

process to alter the eigenfrequencies of the piezoceramic actuator. Small variations (<10% 

thickness variation) caused by the production process are negligible from the original design. 

 

 

 
(a) Frequency of the first resonance peak (b) Amplitude of the first resonance peak 

Fig. 13 Influence of the thickness had of the adhesive layer to the frequency and to the amplitude of the 

S0-mode 
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(a) Frequency of the first resonance peak (b) Amplitude of the first resonance peak 

Fig. 14 Influence of the Young’s modulus Yad of the adhesive layer to the amplitude of the S0-mode 

 

 

Adhesive layer stiffness: The adhesive layers Young’s modulus Yad is varied between 0.5⋅10
9
 

N/m
2
...3300⋅10

9
 N/m

2
. The lower bound correlates to 50% of the Young’s modulus of paraffin and 

the upper bound of the Young’s modulus correlates to epoxy, which is typically used to glue 

piezoceramics irreversible to structures. The influence of the stiffness change in the adhesive layer 

to the frequency of the first peak in the S0-mode spectrum is illustrated in Fig. 14(a). For higher 

Young’s moduli the first resonance peak shifts to higher frequencies. The results show that the 

Young’s modulus of different adhesive layers (epoxy or paraffin) does not change the frequency of 

the first peak drastically. 

Fig. 14(b) shows the amplitude of the first peak in the S0-mode spectrum as a function of the 

Young’s modulus of the adhesive layer. Higher Young’s moduli cause a reduction in amplitude. 

This behavior disagrees with the “shear lag” effect and underline that for thicker piezoceramics the 

eigendynamic superimposes the “shear lag” effect Ha (2010), Willberg et al. (2013). Variations of 

the material properties of the adhesive layer do not seem to influence the first resonance frequency 

drastically. Therefore, changes in the material properties due to temperature variations and/or 

variations caused by a variance in the production process are negligible in the design process. 

In summary one can say that the “shear lag” correction factor based on the assumption of the 

Euler-Bernoulli beam theory does not work correctly in resonance regions of the actuator to 

predict the amplitude losses caused by adhesive layer changes. Therefore, more detailed analyses 

are needed. 

 

4.4.2 Influence of the actuator geometry 
After studying the influence of the adhesive layer on the Lamb wave excitation the impact of 

the actuator geometry is observed. Firstly, the length is studied and secondly the thickness of the 

actuator. 

 

Actuator length: The piezoceramic actuator length lac is varied between 2 mm…16 mm. The 

influence of this variation on the first resonance frequency is illustrated in Fig. 15(a). There is 

approximately a 1/d correlation (analytical) between the length of the actuator and the first peak in 

the S0-mode spectrum caused by the first radial eigenfrequency of the piezoceramic actuator. This 

coincides with the behavior of the radial eigenfrequencies of the a free circular disc in Eq. (19).  
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(a) Frequency of the first resonance peak (b) Amplitude of the first resonance peak 

Fig. 15 Influence of the length lac of the adhesive layer to the amplitude of the S0-mode 

 

 
(a) Frequency of the first resonance peak (b) Amplitude of the first resonance peak 

Fig. 16 Influence of the thickness hac of the adhesive layer to the amplitude of the S0-mode 

 

 

The value of the u3-displacement illustrated in Fig. 15(b) first increases and for lengths lac>9 mm 

decreases. 

This behavior could be explained as a result of superposition of the first radial and a bending 

mode. Both modes are differently influenced by extending the length of the actuator; 1/d for the 

radial mode and 1/d
2
 for the bending modes Pohl et al. (2012). For lengths between 7 mm and 10 

mm the frequency of a lower order bending mode correlates with the first radial mode. The 

optimal diameter calculated with Eq. (20) optimal diameter for the actuator does not agree with the 

results. That is to say, the changes in the actuator length strongly influence the dynamic behavior. 

But also here small changes due to the production process can be neglected (variation<10%). 

 

Actuator thickness: 

The piezoceramic actuator thickness hac is varied between 0.1 mm…3 mm. In Fig. 16(a) the 

frequency as a function of the actuator thickness is plotted. Changes in the thickness has a low 

influence the resonance frequency (compared to a change of the length) of the radial eigenmode as  
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(a) Frequency of the first resonance peak (b) Amplitude of the first resonance peak 

Fig. 17 Influence of the Young’s modulus Ypl of the plate to the amplitude of the S0-mode 

 

 

Eq. (19) stated for the free elastic disc, except the strong decrease between 0.2 mm and 0.6 mm. 

Experimental and numerical investigations of the free piezoceramic disc show that the 

eigenfrequencies for thicker piezoceramics are higher. In this research the frequency of the first 

peak of the S0-mode spectrum is considered. If a bending mode moves near a radial mode, both 

modes superpose each other and lead to higher amplitudes. The first peak is shifted to lower 

frequency regions. 

The amplitudes of the peaks in the S0-mode spectrum are plotted in Fig. 16(b). For thicker 

piezoceramics the amplitudes increase. The S0-mode is dominantly excited by shear stresses. 

Therefore, a higher bending stiffness due to the greater actuator thickness leads to a better shear 

stress transfer into the structure. Moreover, the bending modes are influenced by the greater 

bending stiffness. The frequency of the lower order bending modes shifts to higher frequencies. 

The superposed resonances lead then to higher amplitudes as one can see in Fig. 16(b). 

 

4.4.3 Influence of the plate stiffness 
In this section the influence of the plate stiffness is investigated. The Young’s modulus of the 

plate Ypl is varied between 5⋅10
9
…2.1⋅10

11
 N/m

2
. The density is constant and chosen as alu=2700 

kg/m
3
. Fig. 17(a) shows the frequency of the first peak of the S0-mode spectrum as a function of 

the variation of the Young’s modulus. The frequency changes between 200 kHz and 244 kHz 

without any noticeable connection to the change of the plates Young’s modulus. The amplitudes 

behavior of the first peak of the S0-mode is plotted in Fig. 17(b). For very low a Young’s modulus 

the amplitude is high. In that case the resistance to a deformation of the plate is lower and thus 

higher amplitudes are possible. In contrast to the frequency behavior in Fig. 17(a) there is a 

coupling between the amplitude reduction and the plate stiffness, except for a small variation 

between Ypl=2…2.5⋅10
11 

N/m
2
. 

 

 

5. Conclusions 
 

The paper presented the analysis of dynamic effects of piezoceramic actuators due to Lamb 

wave excitation. To perform this analysis in an effective way isogeometric finite elements have 

been utilized. It has been shown that a k-refinement causes the better convergence of the elements 
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compared to an equal order spectral finite element. Therefore, the conclusion is to use the highest 

possible continuity to reduce the numerical effort. 

The analysis of the dynamic actuator effects have shown, that for coupled piezoceramics the 

optimal excitation assumption stated by Kessler et al. (2002) is not valid for thicker piezoceramics. 

To obtain an optimal actuator design a numerical study has been performed. Various parameters 

have been varied to take the effect of geometry and adhesive bondline into account. The variation 

of the adhesive layer thickness shows that only great thickness changes influence the position of 

the first peak in the S0-mode spectrum noticeably. Therefore, this parameter could be used to adapt 

the position of the first peak. However, small variation in the adhesive layer thickness barely 

influences the position of the peak and thickness variations during the production process do not 

have to be taken into account for the design. The Young’s modulus of the adhesive layer has a low 

impact on the first peak in the S0-mode spectrum as well as to the corresponding amplitude. Small 

variations of the material properties of the adhesive layer during the production process or caused 

by temperature variations do not change the dynamical behavior of the piezoceramic actuator 

significantly. The variation of the actuator length shows that for longer patches the frequency of 

the first peak in the S0-mode spectrum decreases. This correlates with the analytical formulation of 

the radial eigenfrequency of a circular disc. The corresponding amplitudes increase and decrease. 

The bending and the radial mode of the piezoceramic are differently influenced by changing the 

length of the actuator. Therefore, for a specific frequency both modes superimpose. As a result the 

amplitudes of the excited S0-mode are increased. An optimal energy efficient actuator design tries 

to superimpose both resonances. 

The variation of the thickness of the actuator shows that the optimal Lamb wave excitation is 

not only dependent on the length of the actuator. For greater thicknesses the frequency of the first 

maxima of the symmetric mode is reduced. The amplitude of this maximum increases for a greater 

thickness. This numerical result agrees with the experimental findings and disagrees with “shear 

lag” predictions. The resonances of the actuator have a great impact on the excited Lamb wave 

mode. This effect covers the “shear lag” effect and is more dominant in influencing Lamb wave 

amplitudes than the adapted length proposed by Giurgiutiu (2008). The variation of the plate 

Young’s modulus shows that the position of the first peak in the S0-mode spectrum is dominantly 

influenced by the piezoceramic source. The amplitudes, except for soft plates (Ypl<10
11 

N/m
2
), 

show only small variations. 

In summary the design of an optimal shaped piezoceramic actuator (working in resonance) 

could be made for a fixed adhesive layer and a given plate material. Small changes in the adhesive 

layer, actuator geometry and plate stiffness do not dominantly change the behavior of the 

piezoceramic source. 
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