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Abstract.  Domes are architectural and elegant structures which cover a vast area with no interrupting 

columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of 

forms and specialized terms are available to describe them. According to their form, domes are given special 

names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology 

design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The 

network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the 

optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken 

as the objective function. A simple procedure is defined to determine the dome structures configurations. 

This procedure includes calculating the joint coordinates and element constructions. The design constraints 

are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American 

Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society 

of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the 

first stage to investigate the performance of these domes under different kind of loading. At the second stage 

the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is 

performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating 

optimal design for domes. 
 

Keywords:  enhanced colliding bodies optimization; ribbed dome; Schwedler dome; lamella dome; 

network dome; wind load 

 

 

1. Introduction 
 

There are hundreds, even thousands of dome structures all over the world. These domes are 

ribbed domes, geodesic domes, braced and lamella domes. Also, there are many ancient domes as 

well as contemporary domes. No matter their type or age, all domes rely on the same natural forces 

to keep them in place, and provide expansive and unobstructed space. Dome buildings are 

everywhere. These can be churches, mosques, palaces sports arenas, government buildings or 

dwellings. Domes have provided economical solution to this problem throughout the history. The  
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dome shape does not only provide elegant appearance but also offer one of the most efficient 

interior atmospheres for human residence because air and energy circulation are managed without 

obstruction. Dome structures made of various materials have a long architectural lineage extending 

into prehistory. The historical domes were constructed using wood, stone and bricks which 

resulted in having heavy structures.  

The basic parameters that define the geometry of a dome are the total number of rings and 

height of crown, once its diameter is specified. Consequently, optimum topological design of 

domes necessitates treatments of these parameters as design variables. The design constraints to be 

considered in the formulation of the design problem can be implemented according to one of the 

current design codes. Hence, in general the optimum design algorithm to be developed is expected 

to select tubular sections for dome members from the available list such that the provisions of the 

design code adopted are satisfied while the weight or cost of the dome is minimized. 

Optimization methods can be divided in two general categories: ( ) Mathematical programming 

methods that use approximation techniques to solve the optimization problem; and (ii) 

Metaheuristic algorithms (that mimic some natural phenomena including biology and evolution 

theory, Fogel et al. 1966, Holland 1975, Eberhart and Kennedy 1995). One of the major challenges 

in structural design is to introduce new meta-heuristic algorithms with higher potential and simpler 

usage. Popular meta-heuristic algorithms are Particle Swarm Optimization (PSO) (Eberhart RC 

and Kennedy 1995), Ant Colony Optimization (ACO) (Dorigo et al. 1996), Big Bang-Big Crunch 

(BB-BC) (Erol and Eksin 2006), Charged System Search (CSS) (Kaveh and Talatahari 2010a), 

Ray Optimization (RO) (Kaveh and Khayatazad 2012) and Dolphin Echolocation Optimization 

(DEO) (Kaveh and Forhoudi 2013). Successful applications of meta-heuristic algorithms in 

structural optimization problems have been reviewed by Saka and Geem (2013). The Colliding 

Bodies Optimization was recently introduced for design of structures with continuous and discrete 

variables (Kaveh and Mahdavai 2014). The CBO algorithm reproduces the laws of collision 

between bodies. Each colliding body (CB) is considered as an object with specified mass and 

velocity before collision; after collision, each CB moves to a new position with new velocity. 

Design variables can be either continuous or discrete. In real applications, cross-sectional areas are 

selected from a discrete list of available values (Kaveh and Talatahari 2009, 2010b) .The design 

optimization of geometrically nonlinear geodesic domes is carried out where the design algorithm 

developed determines the optimum height of the crown as well as the optimum tubular steel 

sections for its members (Saka 2007). In this paper optimum topology design of linear elastic 

geodesic domes is presented. The design algorithm determines the optimum number of rings, the 

optimum height of crown, and tubular sections for the geodesic domes. The optimum topology 

design algorithm based on the hybrid Big Bang-Big Crunch optimization method is presented for 

the Schwedler and Ribbed domes in Kaveh and Talatahari (2010b). A comparative study is carried 

out for the optimum design of different types of single layer latticed domes in Kaveh and 

Talatahari (2010c). In this paper the optimum geometry and topology design of geodesic domes is 

obtained by utilizing charged system search (CSS). In Kocieck and Adeli (2013), a two-phase GA 

approach is suggested for weight optimization of free-form steel space-frame roof structures 

consisting of rectangular hollow structural sections (HSS). Two roof structures which are 

subjected to the AISC LRFD code and ASCE-10 loadings are optimized, with considering new 

methodology. An efficient methodology is proposed for optimal design of large-scale domes with 

various topologies and dimensions in plan by Babaei and Sheidaei (2013). In Kamyab and 

Salajegheh (2014), an enhanced particle swarm optimization (EPSO) algorithm is presented for 

size optimization of nonlinear scallop domes subjected to static loading. A genetic simulated 
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annealing algorithm (GASA) is utilized to perform, partial and overall optimizations for a single-

layer spherical shell that collapses due to instability under earthquake action by Wenzhheng and 

Jihong (2014). Recently, Rao et al. (2011), developed Teaching-Learning-Based Optimization, 

Sadollah et al. (2015) developed Water Cycle, Mine Blast and improved mine blast algorithms, 

Gonçalves et al. (2015) presented Search Group Algorithm, and Mirjalili developed the Ant Lion 

Optimizer (2015). 

The rest of this paper is organized as follows. In Section 2 consists of optimum design of dome 

structures according to LRFD domes. Section 3 recall the laws of collision between two bodies. 

Comparative study is performed for various types of domes using ECBO algorithm in Section 4. 

Topology and geometry optimization of Schwedler dome under wind load is investigated in 

Section 5. Finally, Section 6 summarizes the main findings of this study. 

 

 

2. Optimum design problem of domes according to LRFD 
 

Optimal design of domes consists of finding optimal sections for elements, optimal height for 

the crown, optimal number of the node in each ring and the optimum number of rings, under the 

determined loading conditions. The allowable cross sections are 37 steel pipe sections as shown in 

Table 1, which are standard sections. In this table the abbreviations ST, EST, and DEST stand for 

standard weight, extra strong, and double-extra strong, respectively. These sections are taken from 

LRFD-AISC (1989) which is also utilized as the code of practice. The process of the optimum 

design of the dome structures includes introducing variables and constraints, and can be 

summarized as 

Find      X= [            ]      

   *           } 

   *                   + 

To minimize  

V(x) = ∑        
  
    

(1) 

Subjected to the following constraints: 

Displacement constraint 

     
                                                                         (2) 

Interaction formula constraints 
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)          

  

    
                                       (4) 

where X is the vector containing the design variables of the elements; h is the variable of the crown 

height; Nr is the total number of rings; dj is the jth allowable discrete value for the design 

variables, hmin, hmax and h* are the permitted minimum, maximum and increased amounts of the 

crown height which in this paper are taken as D/20, D/2 and 0.25 m, respectively in which D is the 

diameter of the dome; ng is the number of design variables or the number of groups; V(x) is the  
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Table 1 The allowable steel pipe sections taken from LRFD AISC 

 Type 
Nominal 

diameter (in) 

Weight per 

ft. (lb) 
Area (in

2
) I (in

4
) S (in

3
) J (in

4
) Z (in

3
) 

1 ST ½  0.85 0.250 0.017 0.041 0.082 0.059 

2 EST ½  1.09 0.320 0.020 0.048 0.096 0.072 

3 ST ¾  1.13 0.333 0.037 0.071 0.142 0.100 

4 EST ¾  1.47 0.433 0.045 0.085 0.170 0.125 

5 ST 1 1.68 0.494 0.087 0.133 0.266 0.187 

6 EST 1 2.17 0.639 0.106 0.161 0.322 0.233 

7 ST 1 ¼  2.27 0.669 0.195 0.235 0.470 0.324 

8 ST 1 ½  2.72 0.799 0.310 0.326 0.652 0.448 

9 EST 1 ¼  3.00 0.881 0.242 0.291 0.582 0.414 

10 EST 1 ½  3.63 1.07 0.666 0.561 1.122 0.761 

11 ST 2 3.65 1.07 0.391 0.412 0.824 0.581 

12 EST 2 5.02 1.48 0.868 0.731 1.462 1.02 

13 ST 2 ½  5.79 1.70 1.53 1.06 2.12 1.45 

14 ST 3 7.58 2.23 3.02 1.72 3.44 2.33 

15 EST 2 ½  7.66 2.25 1.92 1.34 2.68 1.87 

16 DEST 2 9.03 2.66 1.31 1.10 2.2 1.67 

17 ST 3 ½  9.11 2.68 4.79 2.39 4.78 3.22 

18 EST 3 10.25 3.02 3.89 2.23 4.46 3.08 

19 ST 4 10.79 3.17 7.23 3.21 6.42 4.31 

20 EST 3 ½  12.50 3.68 6.28 3.14 6.28 4.32 

21 DEST 2 ½  13.69 4.03 2.87 2.00 4.00 3.04 

22 ST 5 14.62 4.30 15.2 5.45 10.9 7.27 

23 EST 4 14.98 4.41 9.61 4.27 8.54 5.85 

24 DEST 3 18.58 5.47 5.99 3.42 6.84 5.12 

25 ST 6 18.97 5.58 28.1 8.50 17.0 11.2 

26 EST 5 20.78 6.11 20.7 7.43 14.86 10.1 

27 DEST 4 27.54 8.10 15.3 6.79 13.58 9.97 

28 ST 8 28.55 8.40 72.5 16.8 33.6 22.2 

29 EST 6 28.57 8.40 40.5 12.2 24.4 16.6 

30 DEST 5 38.59 11.3 33.6 12.1 24.2 17.5 

31 ST 10 40.48 11.9 161 29.9 59.8 39.4 

32 EST 8 43.39 12.8 106 24.5 49.0 33.0 

33 ST 12 49.56 14.6 279 43.8 87.6 57.4 

34 DEST 6 53.16 15.6 66.3 20.0 40.0 28.9 

35 EST 10 54.74 16.1 212 39.4 78.8 52.6 

36 EST 12 65.42 19.2 362 56.7 113.4 75.1 

37 DEST 8 72.42 21.3 162 37.6 75.2 52.8 

 

4



 

 

 

 

 

 

Topology and geometry optimization of different types of domes using ECBO 

volume of the structure; Li is the length of member i; δi is the displacement of node i; δimax is the 

permitted displacement for the ith node;    is the total number of nodes; c is the resistance factor 

(c=0.9 for tension, c=0.85 for compression); b is the flexural resistance reduction factor 

(b=0.9); Mux and Muy are the required flexural strengths in the x and y directions, respectively; Mnx 

and Mny are the nominal flexural strengths in the x and y directions, respectively; Pu is the required 

strength; and Pn denotes the nominal axial strength which is computed as  

                                                                         (5) 

where    is the gross area of a member; and     is calculated as follows 

    (       
 
)                                                                      (6) 

    (
     

  
 )                                                                        (7) 

Here,     is the specified yield stress; and    is obtained from 

   
  

  
√

  

 
                                                                (8) 

where k is the effective length factor taken as 1; l is the length of a dome member; r is governing 

radius of gyration about the axis of buckling; and E is the modulus of elasticity. In the Eq. (9), Vu 

is the factored service load shear;    is the nominal strength in shear; and    represents the 

resistance factor for shear (   =0.9) 

                                                                        (9) 

 

 

3. Optimization algorithms 
 

This section introduces the enhanced colliding bodies optimization algorithm. First, a brief 

description of standard CBO based on the work of Kaveh and Mahdavi (2014a, 2015) is provided, 

and then the ECBO is introduced, Kaveh and Ilchi Ghazaan (2014a).  

 

3.1. Colliding bodies optimization 
 

The collision is a natural occurrence and the Colliding Bodies Optimization (CBO) algorithm 

was developed based on this phenomenon. In this method, one object collides with other object 

and they move towards a minimum energy level. Fig. 1. The CBO is simple in concept, does not 

depend on any internal parameter, and does not use memory for saving the best-so-far solutions. 

CBO algorithm, like other multi-agent methods, is a population-based meta-heuristic algorithm. 

Each solution candidate Xi containing a number of variables (i.e., Xi={xi,j}) is considered as a 

colliding body (CB). The massed objects composed of two main groups equally; namely stationary 

and moving objects, where moving objects collide to stationary objects to improve their positions 

and push stationary objects towards better positions. After the collision, the new position of 

colliding bodies are updated based on the new velocity by using the collision laws; and the lighter 

and heavier CB moves sharply and slowly, respectively. 
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Fig. 1 Colliding of two bodies 

 

 

The pseudo-code for the CBO algorithm can be summarize as follows: 

Step 1: Initialization. The initial positions of CBs are determined with random initialization of 

a population of individuals in the search space 

  
           (         )                                             (10) 

where   
  determines the initial design vector of the ith CBs.      and      are the minimum and 

the maximum allowable values vector for the variables; rand is a random number in the interval 

[0, 1]; and n is the number of CBs.  

Step 2: The magnitude of the body mass for each CB is defined as 

   

 

   ( )

∑
 

   ( )
 
   

                                                          (11) 

where     ( ) represents the fitness value of the agent i; n is the population size. It is clear that a 

CB with a good value exerts a larger mass than the bad one. In maximization problems, the term 

(1/fit) is replaced by fit ( )  
Step 3: Mating of bodies.  

CBs costs are sorted in ascending order based on the value of cost function. The sorted CBs are 

divided equally into two groups: 

• The lower half of CBs (stationary CBs) includes good agents that are stationary and velocity 

of these bodies before collision is zero. Thus 

              
 

 
                                                      (12) 

• The upper half of (moving CBs) includes agents that move toward the lower half. Then, the 

better and worse CBs, i.e. agents with upper fitness value, of each group will collided together. 

The change of the body position represents the velocity of this bodies before collision as 

      
 

 
           

 

 
                                                 (13) 

where vi and xi are the velocity and position vector of the ith CB in this group, respectively; xi-n/2 is 

the ith CB pair position of xi in the previous group.  

Step 4: Updating velocities. After the collision, the velocity of bodies in each group are 

evaluated using Eqs. (14) and (15). The velocity of each moving CBs after the collision is defined 

by 
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where v and   
  are the velocity of the ith moving CB before and after the collision, respectively; 

mi is mass of the ith CB; mi-n/2 is mass of the ith CB pair. Also, the velocity of each stationary CB 

after the collision is specified by 

  
  

( 
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                                  (15) 

where    
 

 
 and   

  are the velocity of the ith moving CB pair before the collision and the ith 

stationary CB after the collision, respectively; mi is mass of the ith CB;    
 

 
 is mass of the ith 

moving CB pair;   is the coefficient of restitution (COR), which is defined as the ratio of the 

separation velocity of two agents after collision to the approach velocity of two agents before 

collision. For most of the real objects,   is between 0 and 1, which after collision the separation 

velocity of bodies is low and high, respectively. Therefore, to control exploration and exploitation 

rate, COR decreases linearly from unity to zero. 

Thus, it is stated as 

    
    

       
                                                           (16) 

Step 5: Updating positions. 

New positions of CBs are evaluated using the generated velocities after the collision in position 

of stationary CBs. The new positions of each moving CB is calculated by 

  
       

 

 
          

          
 

 
                                       (17) 

where    
     and   

  are the new position and the velocity after the collision of the ith moving CB, 

respectively; xi-n/2 is the old position of ith stationary CB pair. Also, the new positions of each 

stationary CB is 

  
                

                
 

 
                                   (18) 

where   
    ;    and   

  are the new position, old position and the velocity after the collision of the 

ith stationary CB, respectively. Rand is a random vector uniformly distributed in the Range [-1,1] 

and the sign “0” denotes an element-by-element multiplication.  

Step 6: Terminating criterion.  

The process of optimization is terminated if the maximum number of analyses have been 

evaluated. For further details, the reader may refer to Kaveh and Mahdavi (2014b).  

 

3.2 Enhanced colliding bodies optimization 
 

A modified version of the CBO is Enhanced Colliding Bodies Optimization, which improves 

the CBO to get faster and more reliable solutions. The introduction of memory increases the 

convergence speed of ECBO with respect to standard CBO. Furthermore, changing some 

components of colliding bodies helps the ECBO to escape from local optima. The flowchart of 
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ECBO is shown in Fig. 2 and the steps involved are as follows: 

Step 1: Initialization 

The initial positions of all CBs are determined randomly in an m-dimensional search space 

according to Eq. (10). Where   
  is the initial solution vector of the ith CB. Here,      and      

are the bounds of design variables; random is a random vector which each component is in the 

interval [0, 1]; n is the number of CBs.  

Step 2: Defining mass  

The value of mass for each CB is evaluated according to Eq. (11). 

Step 3: Saving 

Considering a memory which saves some historically best CB vectors and their related mass 

and objective function values can make the algorithm performance better without increasing the 

computational cost, Kaveh and Ilchi (2014a, b). Here a Colliding Memory (CM) is utilized to save 

a number of the best-so-far solutions. Therefore in this step, the solution vectors saved in CM are 

added to the population, and the same numbers of current worst CBs are deleted. Finally, CBs are 

sorted according to their masses in a decreasing order. 

 

 

 
Fig. 2 Flowchart of the ECBO algorithm (Kaveh and Ilchi Ghazaan 2014a) 
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Stationary Group Moving Group 

 
Pairs of objects 

Fig. 3 Colliding body groups and the pairs of objects for collision 

 

 

Step 4: Creating groups 

CBs are divided into two equal groups  ( ) stationary group and (  ) moving group. The pairs 

of CBs. Fig. 3. 

Step 5: Criteria before the collision 

The velocity of stationary bodies before collision is zero, Eq. (12). Moving objects move 

toward stationary objects and their velocities before collision are calculated by Eq. (13). 

Step 6: Criteria after the collision 

The velocities of stationary and moving bodies are evaluated using Eqs. (14) and (15), 

respectively. 

Step 7: Updating CBs  

The new position of each CB is calculated by Eqs. (17) and (18).  

Step 8: Escape from local optima 

Meta-heuristic algorithms should have the ability to escape from the trap when agents get close 

to a local optimum. In ECBO, a parameter like Pro within (0, 1) is introduced and it is specified 

whether a component of a CB must be changed or not. For each colliding body Pro is compared 

with      (  =1, 2… n) which is a random number uniformly distributed within (0, 1). If     <Pro, 

one dimension of the ith CB is selected randomly and its value is regenerated as follows 

                  (             )                                   (19) 

where     is the jth variable of the ith CB.                  , are the lower and upper bounds of 

the jth variable respectively. In order to protect the structures of CBs, only one dimension is 

changed. This mechanism provides opportunities for the CBs to move all over the search space 

thus providing better diversity.  

Step 9: Terminating condition check  

The optimization process is terminated after a fixed number of iterations. If this criterion is not 

satisfied go to Step 2 for a new round of iteration. 

 

 

4. Configuration of domes 
 

4.1. Configuration of ribbed and Schwedler domes 
 

The configuration of a Schwedler dome is shown in Fig. 4. Schwedler, a German engineer, who 
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introduced this type of dome in 1863, built numerous braced domes during his lifetime. A 

Schwedler dome, one of the most popular types of braced domes, consists of meridional ribs 

connected together to a number of horizontal polygonal rings. To stiffen the resulting structure, 

each trapezium formed by intersecting meridional ribs with horizontal rings is subdivided into two 

triangles by introducing a diagonal member. The number of nodes in each ring for the Schwedler 

domes is considered constant and it is equal to ten in this study. The distances between the rings in 

the dome on the meridian line are generally of equal length. The structural data for the geometry of 

this form of the Schwedler domes is a function of the diameter of the dome (D), the total number 

of rings (Nr), and the height of the crown (h). The total number of rings can be selected 3, 4 or 5. 

The top joint at the crown is numbered as first joint as shown in Fig. 5 (joint number 1) which is 

located in the center of the coordinate system in x-y plane. The coordinates of other joints in each 

ring are obtained as 

{
  
 

  
    

 

   
   ( 

   

   
(  ∑      )   

   )

   √(   
  

   

    )  (   )

   
 

   
   ( 

   

   
(  ∑      )   

   )

                                     (20) 

where ni is the number of ring corresponding to the node  ;    (      ) (  ) where R is the 

radius of the hemisphere. The member grouping is determined in a way that rib members between 

each consecutive pair of rings belong to one group, diagonal members belong to one group and the 

members on each ring form another group. Therefore, the total number of groups is equal to (3Nr-

2). The joint coordinate of ribbed and Schwedler dome is showed in Fig. 5.The configuration of 

elements contains determining the start and end nodes of each element. For the first group, the 

 

 

  

(a) 3D view (b) Plan view 

Fig. 4 Schematic of a Schwedler dome 
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Fig. 5 Joint coordinates of ribbed and Schwedler domes 

 

 

start node for all elements is the joint number 1 and the end nodes are those on the first ring. The 

start and end nodes of ring elements can be obtained using following equations 

{        
     (     )     

     (     )     
     (            

             
)                           (21) 

{  
                 (     )   

         
                                              (22) 

Also for rib and diagonal number, we have 

{
 

              (     )       (
   

 
)

     (   )       (
   

 
)

    (           
             

)                    (23) 

{
             (     )   

            (    )   
                                                (24) 

where I and J are the start and end nodal numbers of the elements, respectively. The Eq. (21) 

determines the elements of ring groups where each element is made up of two consecutive nodes 

on each ring. The element with the lower and upper numbers on each ring also corresponds to that 

group, according to Eq. (22). Eqs. (23) and (24) present the total elements of the rib and diagonal 

groups located between the rings ni  and ni.+1 Eq. (24) presents only one element which connects 

the first node on the ring ni to the last node on the ring  ni+1 A dome without the diagonal 

members is called the ribbed dome, as shown in Fig. 6. For these domes Eqs. (20)-(22) are also 

valid to determine the joint coordinates and the ring member constructions. However, the rib  
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(a) 3D view (b) Plan view 

Fig. 6 Schematic of a ribbed dome 

 

 

members are assigned using the following relationship 

{
             (     )     

      (  )     
                                                (25) 

For Schwedler domes, the ribbed members between the crown and the first ring are group 1, the 

ribbed members between first ring and second ring are group 2 and the ribbed members between 

second ring and third ring are group 3. The diagonal members between fist ring and second ring 

are group 4, the diagonal members between second ring and third ring are group 5. The members 

on the first ring are group 6, and the members on the second ring are group 7. For the ribbed 

domes, the members between the crown and the first ring are group 1, the members between first 

ring and second ring are group 2 and the members between second ring and third ring are group 3. 

The members on the first ring are group 4, and the members on the second ring are group 5. 

 

4.2 Configuration of network and lamella domes 
 

Topology of single layer lamella and network domes are shown in Figs. 7 and 8. According to 

ribbed and Schwedler domes, also for lamella and network dome, it is possible to generate the 

structural data for the geometry if three parameters consisting of the diameter (D) of the dome, the 

total number of rings, and the height of the crown (h) are known. When the geometry of a dome is 

formed according to mentioned parameters, the topology of domes can be obtained. The topology 

contains the total number of members, member incidences, total number of joints, and joint 

coordinates of the domes. The distances between the rings in the dome on the meridian line are 

generally made to be equal. It can be easily seen from Figs. 9(a) and 9(b) that all the joints are 

located with equal distance between each other on the same ring in both domes. The top joint 

which is its crown (the crown) is numbered as first joint (joint number 1). The first joint on the 

first ring is numbered as joint 2 in each dome type. There are 10 joints on each ring in lamella 

dome. But in the network dome there are 10 joints on odd numbered rings which are ring 1 and 
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Table 2 Displacement restrictions of single layer ribbed and Schwedler domes  

 Displacement limitations (mm) 

Joint no 
X-direction Y-direction Z-direction 

Upper bound Lower bound Upper bound Lower bound Upper bound Lower bound 

1 − − − − 28 −28 

2 33 −33 33 −33 28 −28 

3 33 −33 33 −33 28 −28 

 

 

ring 3, and 20 joints on evenly numbered rings which is ring 2 in our study because all cases are 

considered to have 3 rings. The joint numbers of all the other first joints of other rings are 

computed from the following equation 

Jr1+(r−1)×10                                                         (26) 

where r is the ring number, and Jr1 is the first joint number of the first ring namely 2 for lamella 

dome and the first joint number of previous ring for network dome. It is worthwhile to mention 

that all of the first joints of the odd numbered rings (ring 1 and ring 3) are located on the radius 

that makes angle of 16° with the x-axis and similarly, the first joints of the evenly numbered ring 2 

is located on the intersection points of that ring and the x-axis in lamella dome. However, all of the 

first joints of the rings are located on the intersection points of that ring and the x-axis in network 

dome. In network dome, the first joint of second ring is located on the intersection point of that 

ring and the x-axis and the first joint of the third ring is numbered and it is also on x-axis. First 

member is taken as one and connects joint 1 to joint 2 for each dome type which makes angle of 

16° with x-axis in lamella dome and is on the x-axis in network domes. For the first ring group, the 

start node for all elements is the joint number 1 and the end nodes are those on the first ring. The 

start and end nodes of ring elements can be obtained using Eqs. (21) and (22), and for other rings 

(2 and 3), this process is repeated and all the member incidences are similar.  

Computation of x, y, and z coordinates of a joint on the domes requires the angle between the 

line that connects the considered joint to joint placed at the crown of dome (joint number 1) and 

the x-axis as shown in Fig. 9. For lamella dome, for the odd numbered rings the mentioned angle 

can be computed by Eqs. (27) and (28) for the odd and even numbered rings, respectively. In 

network dome, for the even numbered ring, and for the odd numbered rings the angle can be 

computed by Eqs. (28) and (29), respectively 

   
   

    
                                                                (27) 

   
   

    
 (       )                                                       (28) 

   
   

  
 (       )                                                        (29) 

r is the ring number that joint i is placed on it and j is the first joint number on the ring number r 

which is on the x-axis. The members group which is used in Tables is mentioned in the following 

sentences. For network domes, the ribbed members between the crown and the first ring are group 

1, the members between first ring and second ring are group 2, the members between second ring 

and third ring are group 3. The diagonal members between fist ring and second ring are group 4, 

the diagonal members between second ring and third ring are group 5. The members on the first 
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ring are group 6, and the members on the second ring are group 7. For lamella domes, the ribbed 

members between the crown and the first ring are group 1, the diagonal members between fist ring 

and second ring are group 2, the diagonal members between second ring and third ring are group 3. 

The members on the first ring are group 4, and the members on the second ring are group 5. 

 

 

5. Results and discussion 
 

In this section, four types of common domes are optimized utilizing the ECBO. The modulus of 

elasticity for the steel is taken as 205 kN/mm
2
. The limitations imposed on the joint displacements 

are 28 mm in the z direction and 33 mm in the x and y directions for the 1st, 2nd and 3rd nodes, 

respectively. (Table 2) 

The behavior of domes is nonlinear due to the change of geometry under external loads, 

therefore nonlinear analysis is performed in this study. This is due to the imperfections arising 

either from the manufacturing process and/or from the construction of the structure. Furthermore 

domes are sometimes subjected to equipment loading concentrated at the crown in addition to 

uniform gravity load. In the further step of this study, the domes are also subjected to equipment 

loading.  

 

5.1 Optimum designs of various types of domes obtained by ECBO  
 

The diameter of the domes is selected as 20 m. The domes are considered to be subjected to 

equipment loading at their crowns. The three loading conditions are considered, to compare the 

performance of different domes and find the efficiency of each one in each case of loading.  

Case 1. The vertical downward load of 600 kN; 

Case 2. The two horizontal loads of 150 kN in the x and y directions; 

Case 3. The vertical downward load of 600 kN and two horizontal loads of 150 kN in the x and 

y directions. 

Tables 3, 4 and 5 present the optimum results of the ribbed, Schwedler, lamella and network 

domes under load Cases 1, 2 and 3, respectively. In all load cases, the optimum number of rings 

for both domes is three (Kaveh and Talatahari 2010b). The number of nodes on each ring (Nn) are 

selected 10. The volume of the dome structures can be considered as a function of the average 

cross-sectional area of the elements ( ̅) and the sum of the element lengths, expressed as 

V(X)=      ∑   
  
                                                           (30) 

In all cases, the domes have approximately the same height; however, because of having less 

number of elements, the ribbed dome has smaller value for the sum of the element lengths than the 

other type of domes. For example the length elements of lamella and Schwedler domes is 1.5 times 

bigger than ribbed dome. The mentioned ratio reach to value equal 2, when the network dome is 

compared with ribbed dome. Also, when comparing the optimum sections for these types of 

domes, it can be shown that the rib members in the ribbed dome have much stronger sections than 

the rings elements, while almost all members in the other types of domes have near cross section 

area, when the domes are subjected to loads Case 2 and Case 3. Also, the difference of the average 

cross-sectional areas for ribbed dome compared to other domes is big, because increasing the sum 

of element lengths for the lamella, Schwedler and network domes is compensated by reduction of 

the average cross-sectional areas of the elements. 
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Table 3 Optimum design of different types of domes under vertical load via ECBO 

Dome type 

  Ribbed lamella network Schwedler 

Optimum tubular 

section designations 

Group 1 PIPST (5) PIPST (8) PIPST (5) PIPST (5) 

Group 2 PIPST (4) PIPST (4) PIPST (2 1/2) PIPST (4) 

Group 3 PIPST (4) PIPST (5) PIPST (2 1/2) PIPST (3 1/2) 

Group 4 PIPST (5) PIPST (3) PIPST (3) PIPST (4) 

Group 5 PIPST (3 1/2) PIPST (3 1/2) PIPST (4) PIPST (2) 

Group 6 - - PIPST (5) PIPST (5) 

Group 7 - - PIPST (2) PIPST (3 1/2) 

Optimum height of crown (m) 7.25 5.25 8.00 7.50 

Maximum displacement (cm) 2.80 2.94 2.81 2.77 

Maximum strength ratio 86.56 99.87 89.54 90.29 

 ∑   ( ) 192.64 326.50 459.00 321.66 

  (   ) 22.73 26.83 20.77 19.69 

Volume (  ) 0.42 0.85 0.60 0.55 

 

 

The main goal of this section is to investigate the efficiency of various types of domes, when 

they are subjected to vertical load, lateral loads and both loads simultaneously. From the Table 3, it 

can be seen, under vertical loading condition the performance of ribbed dome is better than other 

types of domes. The optimum volume for ribbed dome is equal 0.42 m
3
, which is the best volume 

among others. It is clear that under, the vertical load the ribbed member are more active than 

diagonal members. On the other hand, the diagonal members support the least amount of the 

applied force. Therefore, they just increase the element lengths of domes increasing the volume as 

well. The Schwedler dome has also a good performance after the ribbed dome under vertical load 

and, it obtains considerably better volume than lamella and network domes, because the increase 

of its element lengths is not as much as lamella and network domes. In brief the ribbed and then 

Schwedler domes contains more appropriate sections and lighter volume than the other type of 

domes for loading Case 1. 

Because of existing only horizontal forces in Case 2, the angles of elements with the horizontal 

line in the optimum design must have the minimum value; therefore, the domes have the minimum 

allowable heights. Also the optimum domes obtain the same height. Table 4 presents the results for 

the all types of domes subjected to lateral loads. It can be shown that, the rib members in the 

ribbed dome have much heavier sections than the rings elements, while almost all members in the 

Schwedler, network and lamella domes are not so much different. Another observation is that the 

stress constraints are dominant for the network, Schwedler and lamella domes while for the ribbed 

dome, the displacement constraints are dominant. In short, the domes with diagonal members 

which are Schwedler, lamella and network domes in this study, have better performance against 

the external lateral forces and have the smaller volume. As a result, Schwedler dome contains 

more appropriate sections and lighter volume than the other types of domes for Case 2. 

Table 5 presents the optimum result for Case 3 loading. In the ribbed dome, the ribbed 

members must tolerate lateral loads and provide sufficient lateral stiffness, then it induce all rib 

members in the ribbed domes have very strong sections compared to other domes which have 

sufficient diagonal members. In other words, the lamella, Schwedler and network domes have 
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Table 4 Optimum design of different types of domes under lateral loads via ECBO 

Dome type 

  Ribbed lamella network Schwedler 

Optimum tubular 

section 

designations 

Group 1 PIPST (8) PIPST (2 1/2) PIPST (2 1/2) PIPST (2 1/2) 

Group 2 PIPST (8) PIPST (2 1/2) PIPST (1 1/2) PIPST (2 1/2) 

Group 3 PIPST (8) PIPST (2 1/2) PIPST (1 1/2) PIPST (2 1/2) 

Group 4 PIPST (2) PIPST (2) PIPST (2 1/2) PIPST (2 1/2) 

Group 5 PIPST (1 1/2) PIPST (2 1/2) PIPST (2 1/2) PIPST (3) 

Group 6 - - PIPST (2) PIPST (2 1/2) 

Group 7 - - PIPST (1) PIPST (2) 

Optimum height of crown (m) 2.00 2.00 2.00 2.00 

Maximum displacement (cm) 2.64 2.20 1.69 1.94 

Maximum strength ratio 55.00 89.49 91.52 82.88 

 ∑   ( ) 164.37 307.76 376.93 270.65 

A (cm
2
) 34.92 10.15 8.02 6.78 

Volume (m
3
) 0.59 0.32 0.33 0.30 

 

Table 5 Optimum design of different types of domes under both vertical and lateral loads via ECBO 

Dome type 

  Ribbed lamella network Schwedler 

Optimum tubular 

section designations 

Group 1 PIPST (10) PIPST (8) PIPST (6) PIPST (8) 

Group 2 PIPST (10) PIPST (6) PIPST (5) PIPST (5) 

Group 3 PIPST (8) PIPST (5) PIPST (5) PIPST (5) 

Group 4 PIPST (6) PIPST (5) PIPST (3 1/2) PIPST (5) 

Group 5 PIPST (8) PIPST (3 1/2) PIPST (3 1/2) PIPST (3 1/2) 

Group 6 - - PIPST (5) PIPST (5) 

Group 7 - - PIPST (2) PIPST (3 1/2) 

Optimum height of crown (m) 4.00 4.50 5.25 5.25 

Maximum displacement (cm) 2.74 2.78 2.76 2.20 

Maximum strength ratio 61.42 73.19 87.97 90.24 

 ∑   ( ) 171.64 320.63 409.77 294.25 

A (cm
2
) 59.58 30.58 22.16 28.53 

Volume (m
3
) 1.04 0.99 0.80 0.79 

 
Table 6 The values of the joint displacements (m) in the optimum single layer Schwedler dome with Nn=10 

and Nr=3 

Direction  X-direction Y-direction Z-direction 

Joint no 1 +1.17×10
−3

 +1.17×10
−3

 –2.19×10
−2

 

 2 +3.02×10
−3

 +1.23×10
−3

 –8.73×10
−4

 

 3 +2.57×10
−3

 +2.40×10
−3

 –6.31×10
−4
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small cross sectional areas because of existing diagonal elements which provide the necessary 

lateral stiffness against the lateral equipment loads. For the domes likes network and Schwedler, 

which have both ribbed and diagonal members, the diagonal and rib elements provide the lateral 

and vertical strengths, respectively. To maintain stability, the height of ribbed dome is obtained 

smaller than other types of domes. In contrary, because of existing more diagonal and ribbed 

members for network dome, its height is obtained bigger than others, and it is stable 

simultaneously. To sum up, the Schwedler and network domes are more appropriate than the 

ribbed ones against vertical and horizontal loads. 

Tables 3, 4 and 5 show that the performance of Schwedler dome is better than lamella, ribbed 

and network domes, while equipment loads are considered to be subjected to the mentioned 

domes. It can be seen that, the obtained volume under loading Case 3, for Schwedler, network, 

lamella and ribbed dome by ECBO method is 0.79, 0.80, 0.99, and 1.04, respectively. Therefore, 

the Schwedler and network domes have obtained lighter volumes than lamella and ribbed domes. 

For example the Schwedler dome obtained 24%, and 20% lighter volume than ribbed and lamella 

domes, respectively. The values of restricted displacement in the optimum Schwedler dome, 

obtained under both vertical and horizontal equipment loading are shown in Table 6. 

 

5.2 Topology and geometry optimization of Schwedler dome under combination of wind, 
dead, snow and equipment loading 

 

This section presents optimum design of the Schwedler dome which have the best performance 

in the previous section, using the ECBO algorithm. To obtain the most suitable volume of dome, 

the number of rings (Nn) for Schwedler dome is considered as 3.  

The diameter of dome is selected as 20 m. In this case, the dead and snow loads, also the 

equipment load which is subjected only at the crown and then, wind load (according to ASCE 7-

05) are considered for Schwedler domes to investigate the realistic behavior and to obtain the least 

volume of dome under this loading conditions. It is worthwhile to mention that the applied wind 

load on Schwedler dome is new and also, one of the main novelty of the present study. The 

number of rings (Nr), the height (h) and tubular sections for elements are defined as the design 

variables in our program. The nonlinear response of the dome is considered during the 

optimization process. Nn is selected as 3. The height of dome is one of the optimization variables, 

and results in alteration of the length of the elements. The dome is considered to be subjected to 

equipment loading equal 600 kN, The dead and snow loads are considered as 200 N/m
2
 and 800 

N/m
2
 respectively, and wind load is determined according to part 6.5.3 of ASCE 7-05. The LRFD 

specification and displacement constraints are considered as the constraints for the domes. The 

modulus of elasticity for the steel is taken as 205 kN/mm
2
. The limitations imposed on the joint 

displacements are according to Table 3.  

 

5.2.1 The design procedure under wind load according to ASCE 7-05  
The design procedure can be explained as follow: 

Step 1. The basic wind speed (V) and wind directionality factor (Kd) for arched roofs, can be 

determined in accordance with Section 6.5.4. The basic wind speed V, used in the determination of 

design wind loads on buildings and other structures is as given in Fig. 6-1 of ASCE 7-05. Basic 

Wind Speed V and Wind Directionality Factor Kd are taken from ASCE 7-05 as 40 m/s and 0.85, 

respectively. 

Step 2. An importance factor, I, for the domes or other structure is determined from Table 6-1  
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(a) Plan view 

 
(b) Side view 

Fig. 7 Schematic of a lamella dome 

 

 

of ASCE 7-05 which can be considered as 1.15 for domes. 

Step 3. An exposure category is determined for each wind direction in accordance with Section 

6.5.6. The exposure category is assumed as C according to situation which is defined in part 6.5.6 

of ASCE 7-05, and Kz can be determined from the following formula 

         (
  

  
)
 

 ⁄                                                        (31) 

Step 4. A topographic factor (     ) is determined in accordance with Section 6.5.7 of ASCE 7-
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05. It is assumed equal 1 in this study.  

Step 5. A gust effect factor (  ) shall be determined in accordance with Section 6.5.8 of 

ASCE. For rigid structures the gust-effect factor shall be taken as 0.85. 

Step 6. An enclosure classification shall be determined in accordance with Section 6.5.9 of 

ASCE 7-05. It is assumed to be enclosed, since all lateral and upper parts of the domes are closed 

and subjected to wind pressure directly.  

Step 7. Velocity pressure,    shall be calculated by the following equation 

 

 

 
(a) Plan view 

 
(b) Side view 

Fig. 8 Schematic of a network dome 
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(a) (b) 
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 D/2 D/2 

(c) 

Fig. 9 (a) Joint coordinates of lamella dome, (b) network dome, and (c) side view coordinate 

 

 

                                                                       (32) 

Step 8. Internal pressure coefficient GCpi shall be determined in accordance with Section 

6.5.11.1. They are considered +0.18 and –0.18 for enclosed structures from Figs. 6-5 of ASCE 7-

05. Plus and minus signs signify pressures acting towards and away from the internal surfaces, 

respectively. 

Step 9. External pressure coefficients Cp shall be determined in accordance with Section 

6.5.11.2. Cp is found from Fig. 6-8 which is for arched domes in ASCE 7-05. The dome is 

assumed to be separated into three parts as shown in Fig. 10, such as windward part, center part 

and leeward part. The parts of single layer Schwedler dome is shown in Fig. 10. Three different 

external pressure coefficients for these three arts of the dome are calculated with respect to rise-to-

span ratio (r) and Cp is determined from the graph depicted in Figs. 6-7 of ASCE 7-05. 
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(a) Forward part  (b) Center part (c) Leeward part 

Fig. 10 Parts of single layer Schwedler dome with five rings under wind load 

 

 

Step 10. Design wind pressure is calculated by the following equation 

         (    )                                              (33) 

 
5.2.2 Load combinations. Optimum design of Schwedler dome with 3 rings for the case D 

+ S + W + E  
In this section, as it mentioned before, the dead, snow, equipment and wind loads (according to 

ASCE 7-05) are considered for Schwedler domes to investigate the real behavior od dome, and to 

obtain the most optimum volume of dome under this loading conditions. In this part, with respect 

to the sign of internal pressure, two loading conditions are considered: 

Case 1. The internal pressure is positive; 

Case 2. The internal pressure is negative; 
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The design dead load is established on the basis of the actual loads like the weight of various 

accessories and cladding that may be expected to act on the dome structure. The dead and snow 

loads are considered 200 N/m
2
 and 800 N/m

2
, respectively. Dead and snow loads are converted 

into equivalent point load for each joint for the sake of simplicity. For this conversion distributed 

load is multiplied by surface area of dome, Fig. 11. The projected area depends the height of dome 

which is taken as one of the variables in ECBO algorithm, and it is calculated by Eq. (34), where r 

is the radius of the dome, and h is the height of the dome 

    (      )                                                       (34) 

The optimization results are provided in Table 7. It can be seen that the optimum volume for 

this loading case is heavier than the Schwedler dome which is just subjected to equipment loading 

in Section 4. The volume of the Schwedler dome under only the equipment load is obtained 0.55 

m
3
, but the volume of the Schwedler dome subjected to combination of wind, dead, snow and 

equipment loads is obtained as 0.70 m
3
, when the internal pressure is considered positive (Case 1). 

This table shows that by considering real loads on dome the volume increases about 28%. For 

Schwedler dome, while internal pressure is consider positive, the strength ratio constraint is 

dominant and very close to one as can be seen from Table 7. 

 

 
Table 7 Optimum design of the Schwedler dome obtained with ECBO algorithm under W, D, S and E Loads 

 
ECBO algorithm 

Case 1 Case 2 

Optimum number of rings  3 3 

Optimum tubular 

section designations 

Group 1 PIPST(8) PIPST(8) 

Group2 PIPST(5) PIPST(5) 

Group 3 PIPST(4) PIPST(4) 

Group 4 PIPST(5) PIPST(5) 

Group 5 PIPST(2 1/2) PIPST(2 1/2) 

Group 6 PIPST(6) PIPST(5) 

Group 7 PIPST(2 1/2) PIPST(3 1/2) 

Optimum height of crown (m) 4.50 4.75 

Maximum displacement (cm) 2.56 2.58 

 ∑   ( ) 287.02 289.32 

A (cm
2
) 28.22 26.58 

Maximum strength ratio 86.07 88.10 

Volume 0.7295 0.7039 

 
Table 8 Three parts of Schwedler dome with three rings and their specifications 

Total joints of dome 31 

Total surface area of dome   (variable) 

 Forward quarter Center quarter Leeward quarter 

Number of joint 6 19 6 

Related area 0.2                  
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Fig. 11 Schematic of a Schwedler dome under wind, dead, snow and equipment loads 

 
 
5.2.2.1 Wind load effect 
The surface of the Schwedler dome under wind load is divided into 3 parts. They are center, 

leeward and forward parts. Because of wind load, downward or upward force can be subjected on 

each part. On the other hand, the dome can have suction or pressure on each part but, it depends on 

many parameters. They are rise-to-span ratio (r), velocity pressure (  ), pressure coefficients (  ), 

wind velocity (v) and etc. Number of the joints and related area to each part of dome are 

programmed according to Table 8. 

The Schwedler dome with optimum height is considered under two aspect of internal pressure, 

positive and negative. When the internal pressure is considered positive (Case 1), and height is 

equal to the optimum value, the forward, center and leeward parts are subjected to suction, suction 

and suction forces, respectively. For example, in dome with 4.50 m height, the forward part, the 

center part and leeward part suction (upward load) are determined as 148.80 N/m
2
, 1233.53 N/m

2
, 

774.40 N/m
2
 respectively by the program. But, when the internal pressure is considered negative 

(Case 2), the forward, center and leeward parts, are subjected to suction (upward loads), suction 

and suction forces, respectively. Again, for example for dome with 4.50 m which is an optimum 

height under loading Case 1, the forces on the forward part, the center part and the leeward part are 

 

 

 
Fig. 12 Side view of a dome roof under wind pressure 
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determined as 312 N/m
2
, 772.73 N/m

2
, 313.60 N/m

2
, respectively by the program, which is shown 

in Fig. 12. As another observatory, according to Table 7, the optimum volume of dome for loading 

Case 2 is slightly lighter than the loading Case 1, but the optimum height of the dome for loading 

Case 2 is higher than that of the Case 1. The optimum heights of designed dome under equipment 

load and combination loads are 7.50 and 4.50, respectively. It is worthwhile to mention, acting 

wind load on domes, have same effect like lateral loads on domes. Therefore, it can be seen for 

Schwedler dome under combinational loads, because of existing wind load, the optimum height 

must be decreased to catch dome stability. In brief, the results show, that the wind has considerable 

effect on behavior of domes. 

 

 

6. Conclusions 
 

In this paper, the Enhanced Colliding Bodies Optimization is utilized for optimum design of 

various types of domes. This algorithm determines the total number of rings, the number of nodes 

on each ring, the optimum height and the optimum steel section designations for the members of 

domes from the available steel pipe section table and implements the design constrains from 

LRFD-AISC. The ECBO is the enhanced version of CBO which is inspired by the laws from 

collision between bodies. The governing laws from the physics initiate the base of the CBO 

algorithm, each agent solution being considered as the colliding body (CB). After the collision of 

two moving bodies which have the specified masses and velocities, these bodies separate with new 

velocities. From optimization point of view, ECBO provides a good balance between the 

exploration and the exploitation paradigms of the algorithm.  

A simple procedure is utilized to calculate the joint coordinates and specify the elements to 

determine the configuration of each type of dome. First, the joint coordinates are calculated. Then 

using some simple relationships, the elements are constructed. A complete investigation on the 

efficiency of various types of domes under three kinds of loadings, is performed. Wind load, 

which has considerable effect on space structures, especially domes, is applied on Schwedler dome 

according to ASCE 7-05. Dead or snow load conditions are also taken into account to consider 

more realistic behavior of dome. The ECBO method which is one of the recent addition to 

stochastic search techniques of numerical optimization is used to obtain the solution of the design 

problems. It can be observed from the design examples of this study that the enhanced colliding 

body method can be used in finding the solution of optimum topology problem where the 

topology, shape and size of members in a structure are taken as design variables. 
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