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Abstract.  The enhancements of bioenergy production effectiveness require the comprehensively experimental 
study of several parameters affecting these bioprocesses. The interpretation of the obtained experimental results and 
the estimation of optimum yield are extremely complicated such as misinterpreting the results of an experiment. The 
use of mathematical modeling and statistical experimental designs can consistently supply the predictions of the 
potential yield and the identification of defining parameters and also the understanding of key relationships between 
factors and responses. This paper summarizes several mathematical models used to achieve an adequate overall and 
maximal production yield and rate, to screen, to optimize, to identify, to describe and to provide useful information 
for the effect of several factors on bioenergy production processes. The usefulness, the validity and, the feasibility of 
each strategy for studying and optimizing the bioenergy-producing processes were discussed and confirmed by the 
good correlation between predicted and measured values. 
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1. Introduction 
 

The worldwide energy requirement has been rising exponentially, and the reserves of fossil 

fuels have been decreasing. The dependence on fossil fuels as our primary energy source 

contributes to global climate change, environmental degradation, health problems and contributes 

to the greenhouse effect. Environmental and energy concerns are major factors driving research on 

the green energy production and use of renewable fuels, an eco-friendly, sustainable and cost-

effective energy sources that can replace a significant amount of the petroleum fuel, to reduce air 

pollution and greenhouse gas emissions (Pan et al. 2008, Perera 2017, Pandey et al. 2018). 

To ensure the sustainability of bioenergy, it is necessary to confirm that the energy produced is 

greater than the energy consumed in its production. Life cycle assessment is a widely used method 

to quantify the environmental impacts and cost in bioenergy development (Lardon et al. 2009, 

Guerrero and Muñoz 2018). Biomass is considered a renewable resource because of its short life 
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cycle when biomass grows; all carbon in biomass comes from the atmosphere and is liberated into 

the environment when it is burned, also, life-cycle assessments of biomass-derived biofuels found 

a significant net reduction in greenhouse gas emissions and environmental burdens. Therefore, 

biomass is thought of as a carbon-neutral fuel. The bioenergies, produced in optimal conditions 

based on the biomass used, are potential substitutes to fossil fuels (Patterson et al. 2013, Tonini et 

al. 2016, Chen et al. 2019). However, during the last few years, biofuel production, such as biogas, 

biomethanol, bioethanol, biodiesel, and biohydrogen, received considerable attention from many 

researchers in the world (Demirbas 2009, Kaparaju et al. 2009, Hasegawa et al. 2010, Wirth et al. 

2015, Pérez-Sariñana et al. 2019). Bioenergy is considered to be an ideal energy alternative in the 

future. It can be produced using a variety of technologies and from various substrates such as 

wastewater and lignocellulosic materials, including agricultural, wood, and forest residue (Kumar 

et al. 2009, Sathish and Vivekanandan 2016). Bioenergy derived from the cultivation of algae has 

therefore been proposed as an alternative approach that does not impact on agriculture (Pittman et 

al. 2011, Onumaegbu et al. 2018, Nassef et al. 2019). Compared with the chemical generation 

process, the bioenergy production process is a more attractive approach because it is recyclable, 

environment-friendly and low cost (Huang et al. 2012).  

Recently, a large number of bioprocesses and pre-treatment methods have been used and 

investigated for biofuels production under different operation conditions. Biomass can be 

converted into energy via thermochemical conversions, biochemical conversions, and extraction of 

oil from oil-bearing seeds (Van der Stelt et al. 2011, Canabarro et al. 2013, Hossain 2019). Among 

reaction conditions the composition of fermentation media, is a very important factor that 

determines the nutrimental and physic-chemical environment such as the substrate, reduction 

agent, bivalents cations, pH, light intensities and temperature for the entire cell biocatalysts in the 

reactor (Weuster-Botz 2000, Karthic et al. 2013, Adnan et al. 2014, Garimella et al. 2019). 

Owing to the intricacy of bioprocesses several mathematical models are used to achieve an 

adequate overall and maximal production efficiency, to optimize, to identify, to describe and to 

provide useful information for the effect of several factors on bioenergy production processes. 

Analysis of the resulting models can aid substantially in avoiding such mistakes or in identifying 

errors or omissions in earlier thinking and interpretations. In this paper, the mathematical 

experiment designs used to study the factors that affect operations and effectiveness of bioenergy 

production, including linear, non-linear, experimental design, neural network design, and hybrid 

systems, in different bioenergy production pathways, are described and evaluated.  

 

 

2. Experimental design and mathematical modeling methods 

 

An experimental design is a process by which certain selected factors are intentionally varied in 

a controlled manner to get their effects on a response of interest, often followed by the analysis of 

the experimental results. According to the number of factors involved for investigation at a time, 

the experimental design can be classified into two categories: One-factor-at-a time design (single-

factor design) and factorial design (multiple factor design).  

Mathematical modeling methods improve the understanding of certain selected factors 

affecting the studied response. The most frequent empirical models fit the experimental data to 

take either a linear form or quadratic form. The selection of a suitable model is important for 

bioprocesses’ mathematical modeling ((Luftig 1998, Czitrom 1999, Daniel et al. 2003, Frey et al. 

2018).  

324



 

 

 

 

 

 

Modeling methods used in bioenergy production processes: A review 

Design of experiment (DOE) is a strategy for carrying out experiments and examining the 

influence of several input factors on the process output. Multivariate statistical approaches require 

the user to establish minimum and maximum values for each factor and define the experimental 

domain to be investigated during the optimization procedure. A combination of different levels of 

effective variables for achieving the optimum operation conditions is attained using response 

surface approaches (Zolgharneina et al. 2013, Frey et al. 2018, Chollom et al. 2020). Therefore, 

the use of experimental design methods is very attractive in the analytical sciences.  

Various designs, investigate the relationship between the process variables or factors x1, x2, ..., 

xk and a quality characteristic y of the product, to construct the empirical models describing the 

response and predicting performance measures over the factor design space, and also synchronize 

study of several factors and reduce the number of experiments (Adnan et al. 2014, Sathish and  

Vivekanandan, 2016, Onumaegbu et al. 2018, Nassef et al. 2019, Ishola et al. 2019, Garimella et 

al. 2019). 

 

2.1 One factor at-a-time design 
One-factor-at-a-time design OFAT is a usual experimental design where only one factor is 

studied in a certain time period while keeping the levels of other factors constant. The level of the 

factor to be investigated is then changed, over the desired range, to study its effects on the 

response. After the experimental results are obtained, certain graphs are generally constructed 

showing how the response is influenced by the factor studied (Wang and Wan 2009, Iqbal 

Syaichurrozi and Sumardiono 2014, Miñón-Fuentes and Aguilar-Juárez 2020) and can be analyzed 

to yield valid and objective conclusions using linear and non-linear modeling.  

Michaelis–Menten, Monod, Luedeking–Piret, modified Gompertz and modified logistic models 

are mostly used in the literature because they have easily interpretable parameters. Kinetic 

constants obtained from these models can be used for the design and operation of the bioenergy 

producing process in bioreactors. 

 

2.1.1 Linear regression 
Y is a variable it can be defined in amount, in rate and yield of bioenergy produced, substrate 

consumed and micro-organisms produced. The best-fitting straight line through the points called a 

regression line is determined by the linear regression, Eq. (1): 

baxY +='  (1) 

where Y’ is the predicted response, a is the line slope, and b is the Y-intercept.  Linear regression 

was widely used to describe the bioprocesses. 

The Michaelis–Menten equation Eq. (2) and The Monod equation Eq. (3) have the same form 

and are based respectively on empirical and theoretical considerations. Both models were widely 

used to describe the effects of substrate concentration on the rates of substrate degradation and cell 

growth, respectively, in the bioenergy production processes. The Monod model Eq. (4) is based, 

particularly, on growth kinetic classic substrate-limited, in which kd is the endogenous decay 

coefficient (Boni et al. 2013). The best way to analyze biological kinetic data is to fit the data 

directly to the Michaelis-Menten and Monod equations using nonlinear regression or linear 

regression by taking the inverse of these equations, the linearization of Eq (2) and Eq (3) gives Eq. 

(5) and Eq (6), respectively. The plotting of 1/v against 1/S, gives a straight line with an 

intersection of 1/vm and a slope of km/vm, km indicates the substrate content necessary to reach 50% 

of the maximum specific rate of substrate degradation. The Luedeking–Piret model Eq. (7) (Gadhe 
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et al. 2014a) is used to describe the relationship between the bioenergy-producing 

microorganisms’ growth rate and the product formation rate. The first term in the Eq. (7), i.e. i 

dX/dt, represents the rate of formation of growth-linked product i, implies that growing cells 

produce the product in the constant proportion of their growth. While the second term, i.e. iX, 

represents the non-growth linked the formation of product i, implies that microorganisms produce 

a product in the constant proportion of their concentration, irrespective of the growth phase. 
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where v (g g-1h-1) is the specific substrate degradation rate; vm (g g-1 h-1) is the maximum specific 

substrate degradation rate; km (g L-1) is the dissociation constant; S (g L-1) is the substrate 

concentration,  is the specific growth rate; m is the maximum specific growth rate; ks (g L-1) is 

the half-velocity constant equal to the substrate concentration corresponding to half of the 

maximum growth rate. 
 

2.1.2 Nonlinear regression 
Like the linear regression, the nonlinear regression relates a response Y to a vector predictor 

variables x, nonlinearly for building a purely empirical model. For example, if something is 

growing exponentially, which means growing at a steady rate, the relationship between X and Y is 

curved, to fit it, non-linear regression is required (Smyth 2002, Motulsky and Christopoulos 2013). 

The modified Gompertz Eq. (8) (Zwietering et al. 1990) and modified logistic Eq. (9) are well 

known and extensively used in various aspects of biology, as well as the substrate degradation 

efficiency, the bacteria growth (Sevinç et al. 2012), the yeast growth (Phukoetphim, et al. 2017) 

and the bioenergy production like biohydrogen (Wang and Wan 2008, Sevinç et al. 2012, Bina, et 

al. 2019, Miñón-Fuentes and Aguilar-Juárez 2020), biogas (Iqbal Syaichurrozi and Sumardiono 

2014, Deepanraj et al. 2015, Zhu et al, 2019), and bioethanol (Phukoetphim, et al. 2017).  
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( ) 214exp1 maxmax

max

+−+
=

PR
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P

  
(9) 

where P is the expected value (ml or g), Pmax is the maximum production potential (ml or g), Rm is 

the maximum production rate (ml/h or g/l),  is the lag-phase time (h) and e equals 2.718. 

Both the modified Gompertz model and the modified logistic model were statistically 

significant and could describe successfully the bioenergy production data obtained from each 

batch test and provide the kinetic parameters P, Rmax,  and Pmax. Sevinç et al. (2012) reported that 

the cell growth data fitted well to the logistic model and the cumulative hydrogen production data 

fitted well to the Modified Gompertz Model. On the other hand, Phukoetphim et al. (2017) 

reported that the logistic model excellently predicted the biomass profile after the beginning of the 

exponential growth phase. However, it failed to estimate the biomass concentration during the 

initial stage of fermentation while the modified Gompertz model describes successfully the cell 

growth curves. Similarly, Deepanraj et al. (2015) reported that the modified Gompertz model 

produced perfect goodness of fit than the modified Logistic model. 

 

2.2 Experimental design methods DOE 
 

Today’s science uses a statistical approach to experimental design due to the diversity and the 

difficulty to identify significant factors, to estimate a response function or to optimize a process. 

Therefore, the use of experimental design methods is very interesting in the analytical sciences 

because they allow a synchronized study of several factors and considerably reduce the number of 

experiments. Experimental design methods are faster to perform and more cost-effective than 

standard experimental design. 

 

2.2.1 First-order models 
The first-order design is the full and fractional factorial designs, due to their simplicity and 

relatively low cost, in which every factor is experimentally studied at only two levels. They can 

also be used to determine simple response surfaces that are linear with respect to all of the 

investigated factors. Only the first stage in a multivariate investigation, where a linear response 

surface is determined, will be mentioned. For a j-factor case, the response surface is given by the 

linear model (Richard et al. 2009, Tarley et al. 2009, Suen et al. 2013) as detailed below Eq. (10) 

E....XXXY m1100 +++= m
 (10) 

where Y is the vector of n observations, αj is the vector of all j-factor interactions, Xj is the matrix 

of orthonormal contrast coefficients for αj, and E is the vector of independent random errors. 
  

Full Factorial Design (FD) and Fractional Factorial Design (FFD) n(k-p): 
A full factorial design is very useful for preliminary studies or in initial optimization steps. This 

design allows free interaction with data, the ability to make comparisons, seeking similarities, 

differences, and trends. Fractional factorial designs n(k-p) are among the main important statistical 

contributions to the efficient investigation of the effects of numerous controllable factors on a 

response of interest (Richard et al. 2009). It was developed when the problem involves a large 

number of factors.  

Fractional factorial experiments use known properties of the design to reduce selectively the 

size of an experiment while, at the same time, limiting the trade-off of critical information that 
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may be omitted if a thorough study of all possible combinations, of the levels of factors of interest, 

is not carried out. Fractional factorial design n(k-p) having N runs and k factors of n levels each with 

N=nk-p. The design is represented by an N x k matrix D with entries 0; 1… n-1, where each row 

represents a run, and each column represents a factor. The generalized minimum aberration 

criterion to judge the optimality of the designs is used. For a design D having N runs and m factors 

and a 1/2p fraction of the number of possible factor level combinations, the response surfaces are 

planar (Suen et al. 2013). 

Fractional factorial designs enable the screening and identification of the main effective factors 

upon the response, which is estimated as the difference between both averages of measurements 

made at the high and low levels of that factor (Li et al. 2013). This design can obtain information 

concerning the major effects in relatively few numbers of runs to simplify the analysis and 

understand the results. The effects are tested to determine whether non-linear terms are required 

during the construction of the model. An n(k-p) fractional factorial design was also used as the 

experimental model to optimize the process parameters for the production of hydrogen. The 

objective of this design was to develop a model that would predict the hydrogen production 

efficiency as a function of various factors selected affecting this bioprocess. 

 

Taguchi design: 
Taguchi design is a fractional factorial design developed by Taguchi and Konishi, it allows the 

effects of many factors with two or more levels on a response, to be studied in a relatively small 

number of runs (Athreya et al. 2012, Wang et al. 2013, Usmanbaha et al. 2019). The values of the 

functions were converted into signal-to-noise ratios (SNRs), which are the log functions of the 

expected outcome that would serve as the objective of an optimization problem (Singh et al. 

2018). The S/N ratio for each response is computed by the following three formulas for the larger-

the-better response Eq. (11) the smaller-the-better response Eq. (12) and the nominal best response 

Eq. (13): 
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where yj is the measured property, n is the number of samples in each test trial, si is the standard 

deviation  

 

Plackett-Burman design: 
For the screening and the identifying procedure, Plackett–Burman experimental design 

(Plackett and Burman, 1946) is adequate (Karthic et al. 2013, Paintsil et al. 2016, Thao Vi et al. 

2017); it is based on the first-order model, linear approach Eq. (14): 

( )kiXY iiv ...10 =+= 
 (14) 

where Yv is the response or dependent variable expressed in bioenergy production as hydrogen 
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production potential (ml l-1 medium), rate (ml 1l- h-1) and/or yield (mol. mol-1 substrate), i is the 

linear regression coefficient, Xi is the level of the independent variable, and 0 is the model 

intercept.  

Plackett-Burman design (PBD) is a small-sized two-level factorial experimental design low and 

a high level coded as (-1) and (+1) respectively, programmed to identify critical physicochemical 

parameters from N number of variables in N+1 experiment, without recourse to the interaction 

effects between and among the variables. Since the sample size is traditionally small, the 

interaction effects are completely shrouded in the main effects. To identify the main important 

effects, the PBD only screens the design space. The selected parameters are further optimized by 

the means of an appropriate design technique of a response surface method (RSM) (Plackett and 

Burman 1946, Sivamani and Baskar 2015, Ekpenyong et al. 2017). 

 

2.2.2 Quadratic model 
A second-order model or quadratic polynomial model typically used in response surface 

methodology (RSM). The RSM is a tool consisting of mathematical and statistical methods used to 

define a relationship linking the response with the independent variables. The RSM method 

combines a two-level full or fractional factorial design with additional points (star points) and at 

least one point at the center of the experimental region, selected to find properties for example 

orthogonality or rotatability, to fit quadratic model. For statistical calculations, the relation 

between the coded and actual values is described as Eq. (15): 

( ) AAAX ii −= 0  (15) 

where Xi is a coded variable value; Ai is the actual variable value; A0 is the actual value of Ai at the 

center point, and A is the step change to the variable. The quadratic equation of the variables is 

given as, Eq. (16): 

 +++= jiijiiiii XXXXy  2

0  
(16) 

where Y is the predicted response; 0 is a constant; i is the linear coefficient; ii is the squared 

coefficient, and ij is the cross-product coefficient.  

Differential calculations were then employed to predict the optimum values needed to acquire 

the maximum hydrogen yield (Sun et al. 2010). An analysis of variance (ANOVA) was conducted 

to test the significance of the fit to the second-order polynomial equation for the experimental data 

(Table 2). The p-value is used to determine the significance of each coefficient and the interaction 

degree between each independent variable. A greater F-value and a smaller p-value indicate that 

the independent variables are more significant. The terms with p-values less than 0.05 suggest that 

the model fit is statistically significant. The model terms with p-values greater than 0.10 indicate 

they are insignificant (Chaganti et al. 2012). 

The coefficient of determination R2 value indicated a close relationship between the 

experimental and predicted values, which suggests that this is a very reliable mathematical model 

for bioenergy production (Sun et al. 2010), the statically significance of this model was checked 

by F-test. The conduction of experiments replicated at the optimum conditions confirms the 

validity of the statistical experimental strategies by comparing the differences of the observed 

results and the predicted values. The accuracy of the empirical model was confirmed by several 

researchers (Thao Vi et al. 2017, Xingyong et al. 2019). 
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Fig. 1 Hexagonal Doehlert two factors design with three possible displacements in the experimental space 

 

 

The RSM method was used to define the impact of independent first order (linear), second-

order and combination mixed variable terms on the hydrogen production via more complex 

experimental designs such as Doehlert matrix (DM), central composite designs (CCD) and three-

level designs such as the Box-Behnken design (BBD), and to optimize the responses using 

desirability function method. Predicted values obtained from each response surface are 

transformed into a dimensionless scale di. The desirability function scale ranges between d = 0 (for 

an undesirable response value) and d=1 (for a totally desirable response value). D is calculated 

combining the individual desirability values by applying the geometric mean, Eq. (17):  

( ) m

mdddD
1

21 ...=
 (17) 

To determine the set of variable values that maximize it, an algorithm is applied to the D 

function. This function has been frequently used during the optimization of analytical systems, 

which involve several responses (Chaganti et al. 2012, Ferreira et al. 2004, Ferreira et al. 2007).  

 

Doehlert matrices: 
For two factors, the Doehlert design consists of one central point and six points forming a 

regular hexagon (i.e., situated on a circle). In three dimensions it can be viewed in different ways, 

depending on the plane projection selected. The number of experiments required (N) is given by 

Eq. (18): 

0

2 CkkN ++=
 (18) 

where k is the number of factors and C0 is the number of center points. Replicates at the central 

level of the factors are performed to validate the model using an estimate of experimental variance. 

The basic hexagon in Fig. 1 has six points lying on a circumference around the center point. The 

two-factor central composite design has eight points, also lying on a circumference surrounding its 

center point. 

In Doehlert designs, the number of levels is not the same for all factors. In a two-factor case, 

for example, one factor is studied at five different levels, while the other is studied at only three 

levels. This property enables a free choice of the factors to be assigned to a large or small number 

of levels. Different criteria can be used to assign the factors. As a general rule, it is preferable to 

choose the factor with the stronger effect as the factor with five levels, to obtain the most system  
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Fig. 2 Three-level full factorial design for three factors experiment 

 

 

information. Also, Doehlert designs are more efficient in mapping space. The adjoining hexagons 

can fill space completely and efficiently, as the hexagons fill space without overlapping. Another 

advantage is its potential for sequencing, where experiments can be reused when the boundaries 

were not well chosen at first (Tarley et al. 2009).  

Barekati-Goudarzi et al. (2016) used Doehlert experimental design to study the effect of the 

four factors and their interactions (Catalyst concentration, solvent ratio, reaction time and 

temperature) for microwave-assisted in-situ transesterification of Chinese tallow tree seeds 

(Triadica sebifera L.). The regression coefficient of determination and the absolute average 

deviation (ADD) calculated for product yield (89.19%) were 0.906% and 1.19%, respectively, 

indicating a good fit of the model. 

 

Three-level full (FD) and fractional factorial design (FFD): 
The three-level full factorial design was adopted by Wang and Wan (2011) to investigate the 

combined effects of temperatures and initial pH on fermentative hydrogen production by mixed 

cultures in batch tests. To obtain the optimal temperature and the optimal initial pH for 

fermentative hydrogen production the modified Ratkowsky model Eq. (19) was used to describe 

and to fit the combined effects of two factors on the substrate degradation efficiency, hydrogen 

yield and the average hydrogen production rate. 

( ) ( )  ( ) ( )   2

maxminmaxmin .exp1..exp1.. pHpHcpHpHTTbTTay −−−−−−=  
(19) 

where y is the response variable, a, b and c are constants, Tmin and Tmax are the minimum and 

maximum temperatures at which y is zero, and pHmin and pHmax are the minimum and maximum 

initial pH at which y is zero. Subsequently, the variables at which the maximum response variable 

was obtained were estimated from Eq. (16). Also, the effect of two variables on the response 

variable was studied by plotting response surface plots and contour plots based on Eq. (16) with 

varying the two variables within the experimental design range. Gadhe et al. (2014b) evaluate the 

efficacy of the ultrasonication pretreatment method for complex food waste before anaerobic 

digestion for enhancement of H2 yield (YH2) and rate (RH2) using a statistical 32 full factorial 

design. 

A 3(k-p) fractional factorial design was used as the experimental model to optimize the process 

parameters for the production of H2 to develop a model that would predict the H2 yield as a 

function of k factors and to optimize them (Fig.2). Chaganti et al. (2012) develop a model that  
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Fig. 3 Central composite design for three factors experiment 

 

 

would predict the H2 yield as a function of pH, the oleic acid (OA) concentration and the biomass 

concentration using 3 (k-p) fractional factorial designs. The authors reported that the model obtained 

to provide a useful approach for predicting optimum conditions for maximum H2 production by 

inhibiting the H2 consumers in mixed anaerobic cultures. 
 

Central composite design(CCD) and Box- Behnken design(BBD): 
A statistical designs CCD and BBD are an efficient tool for optimizing process parameters of 

bioenergy production and enhancing rate and yield of bioenergy production (Bouaid et al. 2009, 

Jha et al. 2017, Selvakumar et al. 2018, Garimella et al. 2019, Chollom et al. 2020). 

A central composite design (CCD), is a five-level fractional factorial design developed by Box 

and Wilson (1951), was used to optimize the key factors that enhanced bioenergy production at the 

design center point. The number of experiments for a central composite design is given by Eq. (20) 

(Ferreira et al. 2007). 

022 CkN k ++=
 (20) 

where k is the number of factors and Co is the number of central points. The overall structure of a 

three-factor central composite design is shown in Fig.3. The levels of the independents variables 

are coded as (-1, 0, +1, - and +). 

Box–Behnken design (BBD) is an autonomous, rotatable quadratic design without inserted 

factorial or fractional factorial points where the combinations of variables are at the midpoints of 

the edges of the variable space and at the center. Besides, Box–Behnken design permits evaluating 

the response function at middle levels and permits the determination of the system performance at 

any experimental point within the range studied via suitable design and analysis of experiments 

(Abbar 2019). For each considered factor, three equally spaced levels coded -1, 0 and +1 are taken 

by the design. The number of experiments (N) required for the development of BBD is defined as 

Eq.(21): 

( ) 012 CkkN +−=
 (21) 

where k is the number of factors and Co is the number of central points. The overall structure of a 

three-factor Box–Behnken design is shown in Fig. 4 (Ferreira et al. 2007).  

The CCD designs provide high-quality predictions over the entire design space but require 

factor settings outside the range of the factors in the factorial part (±). The Box-Behnken design 

is rotatable or nearly rotatable but it contains regions of poor prediction quality.  
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Fig. 4 Box–Behnken design for a three-factor experiment 

 

Table 1 Structural comparison of CCD, and BBD designs for three factors 

CCD Box-Behnken 

Replication X1 X2 X3 Replication X1 X2 X3 

1 -1 -1 -1 1 -1 -1 0 

1 +1 -1 -1 1 -1 -1 0 

1 -1 +1 -1 1 -1 +1 0 

1 +1 +1 -1 1 +1 +1 0 

1 -1 -1 +1 1 -1 0 -1 

1 +1 -1 +1 1 +1 0 -1 

1 -1 +1 +1 1 -1 0 +1 

1 +1 +1 +1 1 +1 0 +1 

1 -1.682 0 0 1 0 -1 -1 

1 1.682 0 0 1 0 +1 -1 

1 0 -1.682 0 1 0 -1 +1 

1 0 1.682 0 1 0 +1 +1 

1 0 0 -1.682 3 0 0 0 

1 0 0 1.682     

6 0 0 0     

Total Runs = 20 Total Runs = 15 

 

 

For three factors, the central composite design and Box-Behnken design offer some advantages 

in requiring a fewer number of runs. For 4 or more factors, this advantage disappears. The CCD 

and BBD designs require, respectively, 5 and 3 levels for each factor. Table 1 summarizes the 

structural comparisons of CCD and BBD designs for three factors.  

The  value for rotatability depends on the number of experimental runs (the number of points 

in the factorial portion) of the CCD, which is given in Eq. (22) (Behbahani et al. 2011): 

 4
1

fN=
 

(22) 

333



 

 

 

 

 

 

Hamza Akroum, Dahbia Akroum-Amrouche and Abderrezak Aibeche 

Table 2 The  value and the number of experiments required by CC and Box-Behnken Designs 

Number of Factors 
CCD BBD 

α value Number of experiments Number of experiments 

2 1.414 13 - 

3 1.682 20 15 

4 2.000 30 27 

5 2.000 33 46 

6 2.378 54 54 

 

 

where Nf is the number of factorial runs of the design, Nf=2k, k is the number of factors. 

Table 2 compares the number of runs required for a given number of factors for Central 

Composite and Box-Behnken designs. A comparison between the Box-Behnken design and CCD 

has demonstrated that the Box-Behnken design is slightly more efficient and more economical 

design than the central composite design. 

 

2.3 Neural network 
 

A neural network (NN) can depict successfully the interactive effects among different factors in 

multivariate non-linear bioprocesses. Neural network design frequently reported in the literature 

include recurrent, Hopfield network, Kohonen, Boltzmann machine, support vector machines, 

radial basis function networks, the single-layer/multilayer perceptron and feed-forward 

backpropagation (Sathasivam et al. 2011, Hanrahan 2011, Bhattacharyya 2012). 

In general, a feed-forward neural network with one hidden layer containing certain hidden 

neurons can give accurate approximations to many nonlinear functions. The inputs chosen are 

factors, while the outputs are response efficiencies, such as the production yield and the average 

production rate. The critical aspect is the choice of the number of neurons in the hidden layers. In 

the training process, the mean square error (MSE) between the experimental data and the 

corresponding predicted data is calculated and propagated backward through the network (Nagata 

et al. 2003, Wang and Wan 2009b).  

The backpropagation (BP) algorithm adjusts the weights in each successive layer to reduce the 

error. This procedure is repeated until the error between the experimental data and the 

corresponding predicted data satisfies certain error criteria and achieves the desired result (Nagata 

et al. 2003, Wang and Wan 2009b). The BP neural network has many advantages, it can solve the 

nonlinear complex relationship problems of the research object, it can improve the computing 

speed of the algorithm, there is no fixed algorithm to calculate the relationship of network input-

output, which is determined by the weights of layers connected (Li and Liu 2019). 

The backpropagation neural network (BPNN) is one of the most significant and extensively 

used models for training of feedforward networks and has been frequently studied in bioenergy 

process (Prakasham et al. 2011, Mohamed et al. 2013, Mahanty et al. 2013, Karthic et al. 2013, 

Betiku and Taiwo 2015, Sewsynker-Sukai et al 2017, Sivamani et al. 2019). 

 

2.4 Hybrid systems 
 

The movement toward more intelligent systems requires consideration of alternative strategies 
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to help optimize the processes studied (Hanrahan 2011) for example, the combination between 

genetic algorithms (GA) and RSM (Wang and Wan 2009c, Fayyazi et al. 2015), (GA) and NN 

(Wang and Wan 2009c), fuzzy logic (FL) and NN (ANFIS) (Ishola et al. 2019), FL and RSM, FL 

and Particle Swarm Optimization (PSO) (Nassef et al. 2019), PSO and GA (Bertram et al. 2016), 

NN and Ant Colony Optimisation (ACO) (Beltramo et al. 2016, Sebayang et al. 2017, Silitonga et 

al.. 2019, Silitonga et al. 2019), NN-ACO-GA (Beltramo et al. 2019). The hybrid technology can 

impart the efficiency and accuracy needed (Whiteman and Kana 2014, Jha et al. 2017, Ardabili et 

al. 2018). 

Fuzzy logic (FL) is an intelligent method, robust, quick, and cheap method; it is an extension of 

the binary logic. Unlike binary-valued logic 0 or logic 1, FL is a multivalued logic. Also, FL 

mimics the humanlike representation of events. For example in binary logic, if the temperature is 

above certain deterministic value we call it hot and it is cold if it is below this value. On the other 

hand, in FL the temperature variable can be represented, for example by linguistic notations such 

as very hot, hot, normal, cold, and very cold. The output of the fuzzy system is usually obtained 

after certain sequential steps; fuzzification, inference, and defuzzification (Nassef et al. 2019, 

Ardabili et al. 2019). 

Genetic algorithm (GA) is a highly parallel, randomly searching algorithm that emulates 

evolution according to the Darwinian survival of the fittest principle. GA had a much higher 

modeling ability; it explores all regions of the solution space using a population of individuals. 

Each individual represents a set of independent variables (Wang and Wan 2009c, Hanrahan 2011, 

Ardabili et al. 2018).  

Particle Swarm Optimization (PSO) is an algorithm that emulates the birds’ movements. It is an 

optimization tool based on the use of several proposed solutions usually called particles. These 

particles constitute a swarm to move within the search space for exploring the location of the best 

solution. During the search process, every particle adjusts its “flying” direction and position based 

on its own best experience in the swarm to be towards the area that contains the global optimum 

(Wolf et al. 2008, Nassef et al. 2019, Kadi et al. 2019). 

Ant colony optimization (ACO) describes one of the swarm intelligence techniques; it is a 

recently represented optimization algorithm capable of optimizing complex process parameters. 

The development of this method was inspired by insect colonies that possess an outstanding social 

structure. The basis of the algorithm is the structure of the ant’s natural behavior looking for food. 

On their way to the food source and back to the nest, they leave a pheromone trail. The pheromone 

trail serves as an indirect means of communication between the ants, identifying the pathways to 

the food source. All the ants move at the same speed and spread pheromone at the same rate. The 

pheromone evaporates at a constant rate as well. Hence the shortest pathways will be mostly used 

and contain accordingly the highest concentration of pheromone. This principle of the “shortest 

path” is used by the ACO algorithm. The described methodology has already been applied 

successfully to the optimization of bioenergy production processes (Beltramo et al. 2016, 

Sebayang et al. 2017).  

GA, PSO, and ACO have been widely employed in pure and hybrid form with successful 

results. The use of hybrid methods such as GA-ANN or GA-RSM leads to an improvement and 

optimization of the process of bioenergy production whereas the use of Multilayered perception 

(MLP) and Adaptive Neuro-Fuzzy inference system (ANFIS) methods leads to the highest 

correlation and the lowest error for prediction of the bioenergy production (Wang and Wan 2009c, 

Whiteman and Kana 2014, Jha et al.2017, Ardabili et al. 2018). PSO and GA, NN-ACO and NN-

ACO-GA hybrids help to minimize the model dimension, to identify the significant process 
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variables, to improve the prediction performance of the ANN models and the optimization capacity 

to produce a high yield of bioenergy and to reduce the cost, time and effort associated with 

experimental techniques (Beltramo et al. 2015, Beltramo et al. 2016, Sebayang et al. 2017, 

Beltramo et al. 2019, Silitonga et al. 2019). 

Noteworthy that, the Artificial Bee Colony (ABC) optimization has been utilized in pure form 

(Rostami et al. 2016, Garlapati et al 2017), to our knowledge, the hybrid form of ABC has not yet 

been utilized in the bioenergy production field. 

The Artificial Bee Colony (ABC) algorithm is an optimization algorithm based on the 

intelligent behavior of honey bee swarm do when looking for the food source. In ABC, the main 

components are the colony of artificial bees which contains three groups of bees (employed bees, 

onlookers bees, and scouts bees), and food source. For every food source, there is only one 

employed bee (Karaboga and Basturk 2007, Rostami et al. 2016). Artificial Bee colony 

optimization has been utilized to optimize the variables to enhance the production of biodiesel 

from mountain almond (Prunus Scoparia) oil using an ultrasonic system (Rostami et al. 2016) and 

methyl butyrate through immobilized lipase-mediated transesterification (Garlapati et al 2017). 

The BCA’s pitfall is that it is good for exploration but it lacks the exploitation factor. The 

capabilities of the bee colony can be enhanced using a hybrid representation (Castillo-Villar 2014). 

 

2.5 Model validation criteria 
 

To evaluate the adequacy and capabilities of the developed model and to assess the accurate 

prediction of each variable studied, different statistical indicators were used in the literature, such 

as coefficient of determination (R2), mean square error (MSE), root mean square error (RMSE), 

mean absolute error (MAE), standard error of prediction (SEP) and absolute average deviation 

(AAD) (Wang and Wan 2009c, Sathish and Vivekanandan, 2016, Adepoju et al. 2018, Sivamani et 

al. 2019, Silitonga et al. 2019), (Table 3).  

R2 is the measure of how well the model describes the experimental data, in other words, it 

measures the alignment of the dataset to the regression line of the plot of data predicted against the 

corresponding experimental data to visualize the modeling ability of the model used. R2 equals 0 

when the values of the factors do not allow any prediction of the responses, and equals 1 when the 

model can perfectly predict the responses from the factors studied. For a model to be adjudged 

reliable, its R2 should be at least 80% (Motulsky and Christopoulos 2013, Ishola et al. 2019).  

MSE is defined as the expectation of the squared difference between an estimator yi and its true 

value yi,exp. RMSE depends on the scale of the dependent variable, it is the square root of MSE; 

both will control the models in the same way. MAE is the sum of absolute differences between true 

value yi,exp and predicted variables yi. It gives the average magnitude of forecast errors, while 

RMSE and MSE give more weight to the largest errors. SEP is the square root of an estimate of the 

unconditional mean squared error of prediction. AAD is used to address both the mean and the 

variability in a single measure. These statistical indicators can only be used for a relative 

comparison of forecasts for the same series through different models. The deviance measures are 

zero only if the values are identical; consequently, the most preferable model is the one that has the 

lowest value (Booth and Hobert 1998, Burati and Weed 2006, Jachner et al. 2007, Siu-Woon Ng 

2011, Kato 2016). In the literature, Wang, and Wan (2009c), Sivamani et al. (2019) and 

Selvakumar et al. (2018) have used several model evaluation metrics simultaneously to evaluate 

the optimization efficiency of RSM and ANN modeling.  
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Table 3 Model evaluation criteria 
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*where n is the number of experimental data, yi is the predicted value obtained from the model, yi, 

exp is the actual value, yi, avg is the average of the actual values, ye is the mean value of experimental 

data. 
 

 

3. A comparative study between the significations of different DOE in the bioenergy 
production process 

 

A comparison of the efficiency of CCD, BBD, and Doehlert designs indicates that both the 

FFD and CCD were applied to optimize the main factors which significantly affect the production 

process. Doehlert matrices and BBD are more efficient than CCD. CCD is much more efficient 

than FFD designs. The FFD is also expensive when the factor number is upper than 2 (Adnan et al. 

2014, Oiwoh et al. 2018, Garimella et al. 2019).  

Doehlert designs are more efficient in mapping space; adjoining hexagons can fill space 

completely and efficiently since the hexagons fill space without overlap. Another advantage is its 

potential for sequentially, where experiments can be re-used when the boundaries have not been 

well chosen at first (Ferreira et al. 2004, Massart et al. 1997, Barekati-Goudarzi et al. 2016).  

BBD does not contain combinations of factors at their highest or lowest level (extreme 

conditions), which avoids dissatisfaction with experimental results. Conversely, they are not 

indicated for situations in which we would like to know the responses at the extremes, that is, at 

the vertices of the cube (Ferreira et al. 2007).  

RSM is the most widely used method, ANN and ANFIS modeling could be presented as a 

better alternative tool for the prediction of process parameters in optimization. Talebian-Kiakalaieh 

et al. (2013) reported that RSM (R2 = 0.9987) was slightly better than ANN (R2 = 0.985) in data 

fitting and estimation capabilities. However, ANN prediction for reaction conversion at the 

optimum amount of variables was 88.40% which was better than 87.98% achieved by RSM. Ishola 
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B et al. 2019 reported that the R2 for the RSM, ANN and ANFIS models were 0.97899, 0.98746 

and 0.99435, respectively. The MSE values obtained for the three models were all low, supporting 

a good fit of the models. Similarly, it has been shown that ANFIS is superior to ANN.  

NND is a superior and more accurate modeling technique compared with the RSM, as it 

represents the non-linearities in a much better way. It has been reported that the genetic algorithm 

based on a neural network had a higher optimizing ability than response surface methodology. 

Otherwise, without multiple-response optimization, several responses would have to be optimized 

separately (Ferreira et al. 2004, Ferreira et al. 2007, Wang and Wan 2011). Simultaneous 

optimization of multiple responses by the method of desirability function involves first building an 

appropriate model for each response and then trying to find a set of optimal operating conditions.  

In Table 4, several parameters have been listed to compare the validity of mathematical models 

used for the production of biodiesel, biohydrogen, bioethanol, and biogas.  
 

 

Table 4 Bioenergy production studies with different mathematical modeling methods   

Bioenergy 

production 

Biomass/ 

microbial 

biomass 

Factors studied 
experimental 

design 

Production 

yield 

Model accuracy 

indicators 
References 

Biodiesel 

oleic acid 

Time, Catalyst 

concentration 

Solvent ratio, T* 

NND 81.8% R2 0,95 (Fauzi and 

Amin, 2013) CCD 77.7% R2 0.832 

waste cooking oil 

T*, Methanol /oil 

molar ratio, time, 

Catalyst-loading 

NND 88.40% R2 0.985 (Talebian-

Kiakalaieh et al. 

2013) CCD 87.98% R2 0.9987 

yellow oleander 

oil 

Methanol/oil 

ratio, H2SO4, time, 

T* 

NND 94.97% R2 0.9999 (Betiku and 

Ajala, 2014) BBD 95.25% R2 0.9947 

rubber seed oil 

molar ratio 

catalyst, 

reaction 

NND 

 

 

CCD 

95.95% 

R2 0.9885 

MSE 1.24 

R2 0.8732 

(Bharadwaj et al. 

2018) 

Palm Oil 

Methanol/oil molar 

ratio, T*, catalyst 

content, time 

NND 97.95% 
R2 0.9958 

MSE 0.0010 (Thoai et al. 

2018) CCD 

 
99.64% 

R2 0.9953 

MSE 0.0879 

waste used oil 

Reaction time, 

Catalyst, 

Methanol/oil ratio 

amount 

NND 98.46% 
R2 0.9950 

RMSE 0.697 (Adepoju et al. 

2018) 
BBD 92.45% 

R2 0.9979 

RMSE 0.708 

Microalgae 
pressure, number 

of passes, time 

BBD 18% R2 0.6853 
(Onumaegbu et 

al. 2018) 

FL-PSO 

 
29.57% MSE 2.060 

(Nassef et al. 

2019) 

Waste cooking 

oil 

T*, catalyst 

loading, methanol/ 

oil, reaction time 

NND 

 
88.3% 

R2 0.99957 

RMSE 0.570 
(Anbessa and 

Karthikeyan, 

2019) CCD 
R2 0.9976 

RMSE 1.178 

Sorrel oil 

methanol/oil molar 

ratio, T*, catalyst 

weight, time 

NND 

 
99.42% 

R2 0.9875 

MSE 0.2774 

(Ishola et al. 

2019) 

ANFIS 

 
99.71% 

R2 0.9944 

MSE 0.1210 

CCD 98.61% 
R2 0.9790 

MSE 0.4482 

338



 

 

 

 

 

 

Modeling methods used in bioenergy production processes: A review 

Table 4 (Continued) 

 

oil of paradise 

kernel 

(Simarouba 

glauca) 

Oil-to-alcohol 

ratio, Time, T* 

BBD 

62% 

RMSE 0.54 

R2 0.97 

AAD 7.15 % (Sivamani et al. 

2019) 

NND 

RMSE 0.29 

R2 0.99 

AAD 5.91% 

Bioethanol 

production 

E. coli SS1, 

glycerol 

pH, T*, Trace 

element, ON*, 

Substrate, Salt 

FFD 
15.72 ± 0.26 

g/L 

R2 0.9133 
(Adnan et al. 

2014) 
pH, Salt, ON*, 

Substrate 
CCD R2 0.9474 

Bread fruit starch 

Bread fruit 

starch hydrolyzate 

concentration, 

Time,  pH 

NND 

 
4.21% 

R2 1 

AAD 0.09% (Betiku and 

Taiwo 2015) 
BBD 3.95% 

R2 0.9882 

AAD 1.67% 

Manihot 

esculenta Crantz 

YTP1 

pH, T*, agitation 

and time 

CCD 

 
9.39 ± 0.33 g/L 

R2   0.9691 

AAD 27.09% 

MSE 1.1082 

RMSE 1.0526 (Selvakumar et 

al. 2018) 

NND 9.39 ± 0.33 g/L 

R2 0.9794 

AAD 13.48% 

MSE 0.4324 

RMSE 0.6575 

Bio-hydrogen 

production 

mixed cultures 
T*, pH, Glucose 

concentrations 

RSM 
289.8 ml/g of 

glucose 

RMSE 16.6% 

SEP  38.4% (Wang and Wan, 

2009c) 
ANN 

360.5 ml/g of 

glucose 

RMSE 7.7% 

SEP 17.8% 

Enterobacter 

species (MTCC 

7104) 

Xylose 

concentration, pH, 

and peptone 

concentration 

CCD 

1.94 mol/mol 

R2 0.961 

RMSE 7.6% (Karthic et al. 

2013) 
NND 

R2 0.995 

RMSE 2.7% 

Upflow 

Anaerobic 

Sludge Blanket 

HRT*, ICV*, T* 

NND 0.92 mol/mol 
R2 0.99 

RMSE 2.22% 
(Jha et al. 2017) 

BBD 0.91mol /mole 
R2   0.90 

RMSE 9.64% 

Rhodobacter 

sphaeroides 

Lactose, Uracil, 

biotin 

BBD 6.8ml/30ml R2 0.9681 (Garimella et al. 

2019) CCD 7.6ml/30ml R2 0.8848 

Biogas 

Agricultural 

waste, mixed 

cultures 

 

T*, pH, Substrate 

concentration, 

Agitation time 

CCD 
537 ml CH4/g 

Vs 

R2 0.991 

MAE 1.98% 
(Sathish and 

Vivekanandan, 

2016) NND 
R2 0.998 

MAE 1.01% 

mixed cultures 
Organic Loading 

Rate, HRT*, pH 

BBD 
5955.4mL/d ± 

225.3 
R2 0.978 

(Chollom et al. 

2020) 
CCD 

4636.31mL/d ± 

439.81 
R2 0.961 

*T: Temperature, ON:  Organic Nitrogen, HRT:  Hydraulic Retention Time, ICV: Immobilized 

Cell Volume.  
 

 

4. Comparative study between OFAT and DOE 
 

Many researchers often carry out one-factor-at-time experiments. While, when studying more 

than one factor, the use of statistical experimental designs is a more profitable and more effective 
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way allowing to vary several factors simultaneously and to determine precisely and systematically 

the interaction between factors and the impact of each one on the response. Moreover, the 

prediction of the response and the optimization of the processes become more efficient because the 

experimental information is located in a larger region of the whole factor space (Czitrom 1999, 

Frey et al. 2018).  

In a one-factor-at-a-time (OFAT) design experiment, at one time all factors are kept fixed, 

while only one factor is changed to be studied (Czitrom 1999, Daniel et al. 2003). In the OFAT, the 

effects of each factor and model parameters y=f(x) are estimated more accurately at the cost of a 

high number of experiences, which involves a waste of time and money. It is also necessary to 

repeat the experience at least twice. Furthermore, the interactions between factors are not 

estimable.  

Frey et al. (2018), optimize simultaneously saccharification and fermentation for biobutanol 

production from a pretreated oil palm empty fruit bunch by Clostridium acetobutylicum ATCC 

824. Approximately, 2.47 g/L and 3.97 g/L of biobutanol concentration were obtained using one 

factor at a time (OFAT) and central composite design (CCD), respectively. The RSM approach 

explores the interaction effects of studied factors towards biobutanol production and improves this 

as well. 

 

 

5. Conclusions 
 

In this paper, different modeling methods and experimental designs including linear, non-linear, 

OFAT, RSM, fuzzy logic and neural network designs used to screen, identify, investigate and 

optimize the different chemical and physical factors in bioenergy production processes were 

summarized. The usefulness, validity, and feasibility of each strategy were discussed to acquiring 

the maximum information about empirical models. 

In the OFAT, the effects of each factor and model parameters are estimated more accurately at 

the cost of a high number of experiences, which involves a waste of time and money. It is also 

necessary to repeat the experience at least twice. Furthermore, the interactions between factors are 

not estimable.  

The Plakett Burman design screens the important variables affecting the bioenergy production 

as well as their significance levels but does not consider the interaction effects among the 

variables. The FFD is less efficient and more expensive than BBD and CCD. The interactions 

between factors can be esteemed using CCD design, Box-Behnken design, fuzzy logic design, and 

neural network design. The hybrid technology (like RSM-GA, NND-GA, ANFIS, and ANFIS-GA) 

can provide the effectiveness and accuracy required for research.  

A comparison of the different modeling techniques was carried out to help researchers choose 

the appropriate modeling technique to simplify the interpretation of the experimental results, to 

acquire the maximum amount of information with a minimum of experience, and to optimize the 

response studied. 
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