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Abstract.  In this paper is presented the solution method for three-dimensional problem of transversely isotropic 
body’s elastoplastic deformation by the finite element method (FEM). The process of problem solution consists of: 
determining the effective parameters of a transversely isotropic medium; construction of the finite element mesh of 
the body configuration, including the determination of the local minimum value of the tape width of non-zero 
coefficients of equation systems by using of front method; constructing of the stiffness matrix coefficients and load 
vector node components of the equation for an individual finite element’s state according to the theory of small 
elastoplastic deformations for a transversely isotropic medium; the formation of a resolving symmetric-tape system 
of equations by summing of all state equations coefficients summing of all finite elements; solution of the system of 
symmetric-tape equations systems by means of the square root method; calculation of the body’s elastoplastic stress-
strain state by performing the iterative process of the initial stress method. For each problem solution stage, effective 
computational algorithms have been developed that reduce computational operations number by modifying existing 
solution methods and taking into account the matrix coefficients structure. As an example it is given, the problem 
solution of fibrous composite straining in the form of a rectangle with a system of circular holes. 
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1. Introduction 
 

The development of modern technologies allows us to create mathematical models that really 

reflect the picture of the stress state distribution of spatial structures. Special attention is paid to 

the study of structural features influence of materials and configuration on fibrous structures’ stress 

state. The mathematical modeling development and solution of physically nonlinear deformation 

of transversely isotropic bodies with stress concentrators problems are considered to be the subject 

of research by many authors, a review of which is presented in (Pobedrya and Gorbachev 1984). 

In Khaldjigitov and Adambaev (2004), sets out the basic provisions (postulates) of continuum 
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mechanics. Along with the classical models, relatively new models of composite are being 

considered, that take into account the connectedness of mechanical fields. In (Tomashevsky 2011), 

an algorithm and mathematical modeling of problem solution taking into account the physical 

nonlinearity of bodies based on the theory of small elastoplastic deformations are considered. It is 

noted that the process of solving the problem is significantly accelerated when using the 

deformation theory, compared to the flow theory. 

In paper (Tandon and Weng 1988) a simple, albeit approximate, theory is developed to 

determine the elastoplastic behavior of particle-reinforced materials. The elastic, spherical 

particles are uniformly dispersed in the ductile, work-hardening matrix. The method proposed 

combines Mori-Tanaka's concept of average stress inelasticity and Hill's discovery of a decreasing 

constraint power of the matrix in polycrystal plasticity. Under a monotonic, proportional loading 

the latter was characterized, approximately, by the secant moduli of the matrix. The theory is 

established for both traction and displacement-prescribed boundary conditions, under which, the 

average stress and strain of the constituents and the effective secant moduli of the composite are 

explicitly given in terms of the secant moduli of the matrix and the volume fraction of particles. In 

paper  (Meleshko and Rutman 2017) application of the flexibility method developed on the bases 

of generalized Mohr formula (generalized flexibility method) allows to create numerical 

algorithms for elastoplastic calculation of framed structures and to obtain adequate results with no 

significant processor and time consumption. In paper (Rutman et al. 2018) several computational 

methods for providing elastoplastic analysis of structural systems and developing its capacity 

curve is reviewed. These methods vary according to the accuracy level of analysis results. Through 

the using different of them; inelastic deformation zones distribution is obtained with desirable 

accuracy level. Consequently; the damage state can be characterized by larger or smaller points on 

the curve. 
In paper (Palizvan et al.) a computational homogenization methodology, developed to 

determine effective linear elastic properties of composite materials, is extended to predict the 

effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element 

simulations of volumes of different sizes and fiber volume fractures are performed for calculation 

of the overall response representative volume element. The dependencies of the overall stress-

strain curves on the number of fibers inside the representative volume element are studied in the 

2D cases. Volume averaged stress-strain responses are generated from representative volume 

elements and compared with the finite element calculations available in the literature at moderate 

and high fiber volume fractions.  
The description of the anisotropy of transversely isotropic bodies’ mechanical properties is 

carried out on the basis of a structural-phenomenological model, which allows the source material 

to be presented as a complex of two jointly working isotropic materials: the base material 

considered from the standpoint of continuum mechanics, and the fiber material that are oriented 

along the anisotropy direction of the original material. It is assumed that the fibers perceive only 

the axial forces of tension-compression and are deformed together with the main material. The 

elastoplastic medium, which is a heterogeneous solid material, is considered. The medium consists 

of two components: reinforcing elements and a matrix (or binder), which ensures the joint 

operation of reinforcing elements. In fibrous materials, the deformation of the elastoplastic matrix 

provides for the loading of high-strength fibers. 

It is known that a fibrous material has the properties of a transversely isotropic medium. In this 

regard, to solve the problem of physically nonlinear deformation of fibrous composites, the theory 

of small elastoplastic deformations is used for a transversely isotropic medium proposed by 
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Pobedrya (Pobedrya 1994). The paper notes that when considering the reinforced composite, 

reinforcing elements stiffness of which stiffness of the binder significantly exceeds, it becomes 

possible to use the simplified deformation theory of plasticity. The simplified theory allows to 

solve specific applied problems by applying the theory of small elastoplastic deformations. The 

essence of simplification lies in the assumption that with a simple stretching of the composite in 

the direction of the transverse isotropy axis and in the direction perpendicular to it, plastic 

deformations do not occur. As a result, the intensity of stresses and strains is determined separately, 

by the main axis of transverse isotropy and by the perpendicular plane. The application of the 

simplified theory is based on the fact that, the rigidity of the reinforcing elements substantially 

exceeds the rigidity of the binder in the reinforced composite that is under consideration.  
This paper is devoted creation numerical method to computational the elastoplastic material 

stress-strain state of fiber composite based on the theory of small elastoplastic deformations of 

transversely isotropic media. An innovation of the present work is the research of the elastoplastic 

state material of fiber composite, what significantly affects strength characteristics of constructions. 

Further the algorithm was proposed for solving the problem of elastoplastic deformation of 

transversely isotropic multiply connected bodies. The algorithm for solving the problem includes: 
1) determining the effective parameters of the transversely isotropic medium; 

2) the construction of a finite element mesh body configuration; 

3) calculation of the locally minimum value of the width of the tape of nonzero coefficients of 

the system of equations; 

4) construction of stiffness matrix coefficients and components of the vector of nodal loads of a 

separate finite element; 

5) the formation of a resolving symmetric-tape system of equations; 

6) solving the system of a symmetric-tape system of equations using the square root method; 

7) calculation of the elastoplastic stress-strain state of a transversally isotropic body. 

For each stage of solving the problem, computational algorithms have been developed that 

allow reducing the number of computational operations by modifying the existing methods of 

solving and taking into account the structure of the matrix coefficients. As an example, the solution 

of the problem of deforming a fibrous composite in the form of a rectangle with a system of holes 

is given. 
 

 

2. Problem statement and solution method 
 

The elastoplastic medium of inhomogeneous solid material is investigated. The medium 

consists of two components: fibers and a matrix (binder) material. The matrix material ensures the 

joint operation of reinforcing elements. To solve the problem, the theory of small elastoplastic 

deformations is used for a transversely isotropic medium (Pobedrya 1984). 

The general formulation of the boundary value problem of the theory of elasticity for 

anisotropic bodies includes: 

- equilibrium equations ; (1) 

- generalized Hooke's law ; (2) 

, 0,ij j i iX x V + = 

ij ijkl klC = 
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- Cauchy relations  ;  (3) 

- boundary conditions    ,  

, 
(4) 

where - is the component of the displacement vector; 

,  - bulk and surface forces;  

,  - part of the volume  bounding surface ;  

 - external normal to the surface ;  

 - tensor of elastic constants. 

In the simplified theory of small elastoplastic deformations of a transversely isotropic medium, 

the generalized Hooke law (2) takes the following form: 

                   (5) 

where 

 (6) 

 and
 

 - Ilyushin’s plasticity functions, whose values in 

the elastic zone are equal to zero, 

uP
, uQ

 and up
, uq

- stress and strain tensor intensity (respectively plane isotropy and 

isotropy transversal axis), 

 - hardening coefficients and elastic deformation limits in the isotropy plane . 

 - hardening coefficients and elastic deformation limits along the isotropy axis . 

In the elastic area, the parameters  are determined from Hooke's law. In the area of plastic 

deformation, the parameters are determined on the basis of the A. Ilyushin’s deformation 

theory; 

 - elastic constants of a transversally-isotropic medium; 

( ) - components of the deviator parts of the transversely-isotropic stress and strain tensors 

in the isotropy plane ; 

( ) - components of the deviator parts of the transversely-isotropic stress and strain tensors 

along the isotropy axis : 

 (7) 
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(8) 

where 

, (9) 

,  (10) 

, (11) 

,  (12) 

The mechanical parameters of the transversely isotropic material are related to the modules  

by the following relations: 

 

where 

- effective Poisson's ratio and - effective elastic moduli in the isotropy plane of the 

transversely isotropic material; 

 - effective Poisson ratios and - effective elastic moduli along the isotropy axis of the 

transversely isotropic material. 

It is assumed that the transversal isotropy plane coincides with the plane , and the isotropy 

axis with the axis . The studied medium is homogeneous with effective mechanical parameters 

both along the isotropy axis and along the isotropy plane. Based on this, the iterative process of the 

initial stress method is used to solve the elastoplastic problem (Brovko et al. 2011). 

The effective mechanical parameters of the transversely isotropic material are related to the 

modules λi with the following relations: 

( )  
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Here μef and μ’
ef – are the effective Poisson coefficients, Еef and Е’

ef – are the effective Young's 

modul, Gef and G’
ef - are the effective longitudinal shear moduli, respectively, along the transverse 

isotropy plane and the transverse isotropy axis. 

To calculate the effective mechanical parameters of fibrous materials, we use relations that 

allow to take into account the internal structure of the material for the calculation of periodically 
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inhomogeneous materials based on the asymptotic averaging method and are suitable for any 

values of properties and volume fractions of components (Bolshakov et al. 2008): 

,/))(1(4)1(
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where 

ʋ 2, ʋ1 - is the Poisson’s ratio of the fiber and matrix (ʋ1= 1-ʋ 2), 
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In the general case, by representing the relationship between the stress tensor σij and the strain 

tensor ɛkl as a function σij = F(ɛkl), the Cauchy relation and displacement vector of each particle in 

the coordinate system Оx1x2x3 as ),,( 321 uuuu , one can imagine a nonlinear relationship between 

the stress tensor and displacement vector ui (Pobedrya 1994):   

  )()( uuF ijijij


 == . 

In this case, the equilibrium equation (1) defines a system of three partial differential equations 

for the three components of the displacement vector. For this system of equations, one can put 

three types of boundary conditions: in displacements (3), stresses (4) or a mixed type. Thus, the 

process of deformation of a solid body in equilibrium under the action of external forces can be 

reduced to the determination of the displacement vector 𝑢⃗ . Based on the solution of boundary 

value problems, it is possible to determine the components of the displacement vector. From the 
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known values of the components of the displacement vector, one can determine the components of 

the strain tensor and the stress tensor. 

 

 

3. A finite element model of a multiply - connected area 
 

The finite element mesh of a multiply connected area is formed by “stitching” (merging) the 

canonical subdomains. By canonical is meant the area for which there is an algorithm for 

constructing a finite element mesh. A quadrilateral (in the case of a two-dimensional body) and a 

quadrilateral prism (for a three-dimensional body) are chosen as the final elements, since filling 

the real area with these elements is very effective. 

The computational algorithm for constructing a finite element mesh of a multiply connected 

region consists of a sequence of the following steps: 

1) the formation of a finite element mesh of canonical subareas; 

2) “stitching” (merging) subdomains; 

3) determine the initial front; 

4) ordering node numbers based on the frontal method; 

5) minimization of the tape width of the system of equations. 

Finite element representation of the area is described by the set 

Ω = {N, M, MК, MN}, 

where  
N - number of nodes;  

M - quantity of finite elements;  

MK –coordinate nodes array;  

MN - array of node numbers of finite elements.  

The definition is given, according to which the area is called "canonical" if there is an 

algorithm for constructing its finite element mesh. Further a ratio which by combining ("stitching") 

of elementary sub-areas forms a finite element representation of the configuration area complex is 

given: 


=

=
k

i

i

1

, 

where Ωi - finite element representation of the i-th elementary subarea, k - number of sub-areas 

which to be combined.  
At the initial stage of solving the problem, a library of finite element meshes of canonical areas 

is formed. The merging of areas is based on the criterion of coincidence of boundary nodes by 

establishing a simple hierarchy of volumes, surfaces, lines and points. The formation of elements 

of the set of initial fronts is carried out by determining the numbers of vertices and boundary nodes 

of the finite element representation of a multiply connected area. Renumbering nodes and finite 

elements is carried out on the basis of the frontal method (Kamel and Eisenstein 1974), taking into 

account the fact that vertices and faces of the structure are used as the initial front. It is known that 

the tape width of nonzero coefficients of the system of resolving equations of the FEM depends on 

the ordering of the nodes and finite elements of the finite element mesh. Identifying the numbering 

at which the width of the tape has the smallest value is determined by conducting a computational 
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experiment. As the variation parameter, elements of the set of initial fronts are used. The 

developed algorithm for constructing a finite element mesh allows, by ordering the node 

numbering, determining such a sequence in which the width of the tape of nonzero coefficients of 

the resolving system of equations of the FEM is locally minimal (Polatov 2013). 
 

 

4. Construction of the resolving system of symmetric-tape equations 
 

The most significant and largely determining the quality of the FEM calculation scheme is the 

construction of the stiffness matrix coefficients and the formation of a system of resolving 

equations. 

Each hexagon element from the family of finite elements into which the body is divided can be 

mapped into a three-dimensional element of regular shape, for example, into a cube. For a linear 

finite element with 8 nodes, the functions of the form Ni in the local coordinate system ξ, η, ζ can 

be represented as given expressions that satisfy all necessary criteria (Zienkiewicz and Taylor 

2005): 

( )( )( ),111
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1
000  +++=
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where 

iii  *,*,* 000 === , 

ξi, ηi, ζi - coordinates of the −i  node,  ni ,1= . 

To this end, global coordinates, in this case Cartesian, are associated with local coordinates by 

the relation: 
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|J| – is the Jacobi matrix. 

Here 
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where the points with coordinates xi, yi, zi by definition of the properties of the form function 

312



 

 

 

 

 

 

Algorithm of solving the problem of small elastoplastic deformation… 

 

coincide with the corresponding points of the border of the element (i=1,2,…,n; n - is the number 

of nodes in the element). 
Where can we write: 
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(13) 

Further, taking into account the one-to-one correspondence between the local and global 

coordinate systems, we can write the components of the Jacobi matrix in the following form: 

  =
































































=

===

===

===

n

i
i

i
n

i
i

i
n

i
i

i

n

i
i

i
n

i
i

i
n

i
i

i

n

i
i

i
n

i
i

i
n

i
i

i

z
N

y
N

x
N

z
N

y
N

x
N

z
N

y
N

x
N

J

111

111

111

























































































nnn
n

n

n

zyx

zyx

zyx

NNN

NNN

NNN









222

111

21

21

21

*






 

(14) 

We denote the components of the inverse matrix [J]−1 as follows: 
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(15) 

Using the obtained relations (13-15), the deformation vector of the finite element e can be 

written in the local coordinate system: 
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where ci={ci1, ci2, ci3}, i=(1,2,3)– the components of the inverse matrix [J]−1, 

 e
g - is the displacement vector of e-th finite element; 
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0 - zero vector, dimension 3; 

0 - zero matrix, of dimension 38. 

Using the obtained relations (13-15), the deformation vector of the finite element e can be 

written in the local coordinate system:  

The stress vector associated with the deformation vector by the Hooke law can also be 

represented: 
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where [D] - elastic matrix of transversely isotropic material with effective mechanical parameters. 

Now, making the appropriate substitution, we can write an expression to calculate the stiffness 

matrix 
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   dddJdV det= . 

To calculate the integral of surface loads, it is necessary to consider each surface of the final 

element separately. Depending on which surface the load is given, six different values of this 

integral can be written. Suppose that a uniformly distributed load ξ=1 is applied on the surface 

F={Fx,Fy,Fz} and the four first nodes of the finite element are located on it. Then the vector of 

nodal forces can be represented in the form: 
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The coefficients of the stiffness matrix of isoparametric finite elements and components of the 

vector of nodal loads are calculated by means of Gaussian quadratures, since it ensures the greatest 

accuracy for a given number of integration points. Using the Gauss formula three times to 

integrate the function of one variable, you can write: 
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where  

 t - is the number of integration points; Hi,Hj,Hk – weights. 

Such an approach is especially effective in the three-dimensional case, since it allows to 

approximately halving the number of integration points as compared to the standard t×t×t– point 

formula. 

For the integration of expressions [B]T[D][B] and [Np]T{F} sufficient quadrature second order. 

The coordinates of the nodes and the weighting factors for the Gauss quadrature are given in paper 

(Laurie 2007). 

 The constructed stiffness coefficients for all finite elements are used in the formation of the 

resolving system of equations. Usually several elements converge in one node. The essence of the 

assembly is to sum up the corresponding coefficients of the stiffness matrices of adjacent elements 

for each node in each direction and place this sum in the right place of the global stiffness matrix. 

Quantifying the stress-strain state of spatial bodies requires a breakdown of the area occupied 

by the body into a large number of finite elements. This leads to the construction of a system of 

high-order algebraic equations and is fraught with certain difficulties when implemented on 

computer systems. For this purpose, we used the method of line-by-line data preparation for each 

node separately, which ensures the construction of a tape system of high order algebraic equations 

taking into account the symmetry of its coefficients. 

 

 

5. Solutions of a symmetric-tape system of equations of high order 
 

The use of FEM leads to a resolving system of linear algebraic equations of high order. To 

solve the system of equations, the square root method is used, modified for the symmetric - tape 

structure of the coefficient matrix (Polatov 2019). Since each finite element is associated with a 

limited number of other finite elements, the matrix of the system of equations always turns out to 

be rarely filled. The arrangement of the coefficients in the matrix is closely related to the order of 

the numbering of the nodes in the body. In the case of random numbering, nonzero components are 

also distributed randomly in the matrix, which leads to an increase in the calculation time of the 

problem. Therefore, it is necessary to choose an order of numbering in which non-zero elements 

would be grouped around the main diagonal of the matrix, that is, would form a strip (ribbon). The 

procedure of ordering the node numbers in the finite element model allows minimizing the width 

of the tape of nonzero coefficients of the resolving system of equations. Since the coefficients of  
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Fig. 1 The location of the coefficients of the system of equations 

 

 

the matrix of such a system of equations and the coefficients of the stiffness matrix of finite 

elements are symmetric, then at the stage of solving the system of equations it is advisable to use 

only the diagonal elements and the elements located below it, that is, the lower triangular matrix. 

In this case, the coefficients of the last matrix also have a tape structure. 

 In the square root method transformations, the operation of matrix-vector multiplication is 

mainly used. In this regard, an algorithm for multiplying the matrix by the vector has been 

developed for the case when only the coefficients of the lower band of the triangular matrix are 

given. If we arrange these coefficients line by line, a rectangular matrix Sij is formed with 

dimensions n×l, where n - is the order of the system of equations, l is the half width of the tape of 

nonzero coefficients, including diagonal elements. Moreover, the diagonal elements of the original 

matrix are located on the last l - th column of the matrix Sij. 

To illustrate the transformations, assume that n = 9, l = 4. In this case, the lower triangular and 

rectangular Sij matrices have the following representations (Fig. 1). 

For the formation of the process of multiplying the matrix Sij by the vector xj in the case when 

the transformed coefficients of the matrix, located diagonally and below, are taken as a basis, the 

following relation is developed and used: 
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The relation given makes it possible in the algorithm of the square root method, by using the 

coefficients of the lower triangular matrix, to dispense with the zero coefficients of the nonzero 
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elements located outside the ribbon and the coefficients of the upper triangular matrix. On the 

basis of the obtained solutions of the system of resolving equations, which correspond to the nodal 

displacements, the parameters of the stress state are calculated using the relation (5, 6). 

 

 

6. Visualization of calculation results 
 

To visualize the resulting parameters the algorithms that allow display a picture of object’s 

deformation-stress state are developed. Since the values of the displacement is smaller compared 

with the dimensions of construction the values multiplied by the correction coefficient k: (u′, v′, 

w′)=k·(u, v, w) is used in the algorithm. 
This coefficient is selected by the user depending on the problem. To improve the visualization, 

the coordinate values of nodes are also multiplied by the correction factor. The correspondence 

between the parameter and the fill color is determined from the following relationship: 

, 

(20) 

, 

(21) 

where  

pmin, pmax - respectively, the minimum and maximum values of parameter;  

C - machine-dependent function that linearly maps the numerical interval [-1; 1] in the space of 

colors from dark blue to dark red.  

Then the process of gradient fill is beginning. In this case the dependence between the values of 

parameter and color is given by relationship (21), where n - number of isolines, c1, ..., cn - the color 

values by which will be used while painting cross section areas. The remaining area will be 

colored in the color c*. For user convenience, the color is specified as a numbers from -100 to 

+100. 

 

 

7. Software package 
 

For performing computational experiments, the ARPEK - special software package is 

developed. Software has a modular structure; data exchange between modules is executed through 

configuration files and data files. Further, scheme of functioning calculation modules of ARPEK 
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Fig. 2 Architecture of ARPEK - software package 

 

 

software (Fig. 2) is described. Construction of finite element mesh is carried out in APKEM - 

software module. 
Next the EFFECT module performs calculations the effective mechanical properties of the 

material. Formation of equations’ system resolving is performed in FEM RAM10 module. To 

solve equations’ system method of square roots, modified for equations’ system with symmetric-

band structure, is used. The solution process consists of two stages: first stage - RAM12 module, 

performs calculations in accordance with direct path algorithm, second stage - RAM13 module –

reverse path of solution method. As result - vector of nodal displacements is formed. In operation 

stage, RAM11 module counts values of the stress-strain state component, which are recorded in 

the output module - PARAMS. While physically nonlinear problems solving, for clarification of 

elastoplastic solution based on iterative process based on Initial stress method - PLASN module is 

used. The output values of elastoplastic stress-strain state are recorded in PARAMS file. 

Visualization of calculation results is performed in TASVIR software module. 
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Table 1 Comparison of calculation results 

Model u σxx [MPa] pu Pu [MPa] 

Transversely-isotropic -10.20*10-2 -0.997*104 0.1494 0.705*104 

(Khaldjigitov 2003) -09.57*10-2 -1.003*104 0.1500 0.707*104 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Distribution of deformation intensity pu (fragments) 
 
 

8. The computational experiment 
 

The results of numerical simulation of solving the three-dimensional problem of elastoplastic 

deformation of structural elements made of fibrous materials are given. 

Validation of the newly created program is performed by comparing the numerical results with 

some of the results available in the literature. In the paper (Polatov 2019), the accuracy of the 

numerical results of the calculation is confirmed by graphically comparing the solution of the 

elastic problem of stretching a fiber composite plate with a hole in the center (Karpov 2002). 
To test the software, the results of the calculation of the problem of two-sided compression of a 

transversely isotropic elastoplastic single cube from a magmatic with uniformly distributed loads 

Pxx = ±104 MPa along the axis OX are considered. Construction material has a linear hardening. 

The main axis of transversal isotropy is directed along the OZ axis. For a given load, a uniaxial 

stress state is observed throughout the cube. The material is completely in plastic state. In the first 

line of Table 1 presents the results of solving the above elastoplastic problem. To substantiate the 

reliability of the obtained results of the calculation, the second line contains the solutions of a 

similar problem based on the variation-difference method (Khaldjigitov 2003). Comparison of 

results confirms the correctness of the results obtained and it should be noted that with uniaxial 

stress, there is a steady convergence of the iterative process. 

Being considered the process of reducing stress by changing the shape of the construction 

contour with the minimum distortion of stress state is considered. The geometrical dimensions of 

structures and stress concentrators are dimensionless relative to the side of a square plate. 

The deformed condition of infinite lengthy strip of fibrous material with the system of uniaxial 

holes is considered. The fibers are arranged in the direction of the OZ-axis. Volume content of 

boron fibers is taken as 35%., mechanical parameters have:  

E = 0.9964 * 105 MPa, E'= 1.8532 * 105 MPa, G = 0.4311 *105 MPa, G'= 0.3802 * 105 MPa,  

μ = 0.1558, μ'= 0.2762, the limit of elastic deformation of duralumin is ps = 0.003. 

Strip is stretched in the direction of the fibers (Pzz = 950 MPa). The centers of the holes of 

radius R = 0.05 placed along the OX-axis (hereinafter all linear dimensions are given relative to 

the unit size plate). The distance between the centers of holes is h = 0.2, width of the strip – 1,0 , 
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thickness – 0.1 . Analysis of the deformation intensity indicates to the presence of mutual 

influence of horizontally located holes (fig.3.a). The vicinities of holes are unloaded and no plastic 

zone is presented. The increasing values of deformation are observed along the axis of holes’ 

system. 

Stretching of endless strip with a system of vertically arranged pair holes is investigated as well. 

The distance between of holes along the vertical h = 0.2, along horizontal - l = 0.5 . Unloading of 

strip’s deformed state is the result of mutual influence of holes both, along vertical, as well as 

horizontal (fig. 3.b). The values of deformation intensity of the strip in this case are bit lower than 

in the case of uniaxial holes’ system. 
Thus, analysis of the results of computational experiments allow to design a rational structure 

of fiber composites, to determine placement of the structural holes and to reduce the concentration 

of stress in constructions. 

 

 
9. Conclusion 

 

In the course of the research produced the following results: 

•  on the basis of finite element method and the theory of small elastic-plastic deformations 

for a transversely isotropic environment the numerical model, computational algorithms and 

software for solve three-dimensional problems of physically nonlinear deformation of structural 

materials are developed.  

•  analysis of the results of computational experiments allows designing a rational structure of 

fiber composites, to determine placement of constructional holes and to reduce the concentration 

of stress in constructions. 

•  method has been created, computational algorithms and software for formation grid of finite 

element representation of three-dimensional constructions is developed that enables automation of 

3D representation on user computer monitor. 

•  on the basis of numerical modeling and computational experiments three-dimensional 

elastoplastic problems connected with the study of the presence of stress concentrators on the 

deformation structures of fiber composite materials are solved. 
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