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Abstract.  The present paper is concerned with analysis of two longitudinal cracks in a viscoelastic 
inhomogeneous cantilever beam. The loading of the beam is applied by two stages. At the first stage, the strains 
increase with time at a constant speed up to a given magnitude. At the second stage, the strains remain constant with 
time. The viscoelastic behavior of the beam is described by using a viscoelastic model with a linear spring in series 
with a linear dashpot and a second linear dashpot connected parallel to the spring and the first dashpot. Stress-strain-
time relationships of the viscoelastic model are derived for both stages (at increasing strain and at constant strain with 
time). Time-dependent strain energy release rates are obtained for both longitudinal cracks by analyzing the balance 
of the energy. Solutions to the time-dependent strain energy release rate are derived also by considering the time-
dependent strain energy stored in the beam structure. The solutions are used to analyze the change of the strain energy 
release rate with time at both stages of loading.  
 

Keywords:  longitudinal crack; viscoelastic beam; inhomogeneous material; time-dependent strain; 

analytical study  

 
 
1. Introduction 
 

The search for efficient decisions in various areas of the modern engineering very often leads to 

applications of continuously inhomogeneous structural materials. The most important 

characteristic of these materials is the fact that their properties vary continuously along one or 

more directions in the solid. Therefore, the material properties are continuous functions of one or 

more coordinates (Tokovyy and Ma 2017, Tokovyy and Ma 2019, Tokovyy 2019). The 

continuously inhomogeneous materials are very useful for load-bearing structural engineering 

applications in which different operational requirements are imposed on different parts of a 

structural member. This is due to the fact that the material properties of continuously 

inhomogeneous materials can be formed technologically by gradually changing the microstructure 

and composition during the manufacturing process. In this way, one can realize significant benefits 

from the continuous material inhomogeneity.  

The functionally graded materials are a class of continuously inhomogeneous structural  
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Fig. 1 Geometry of viscoelastic inhomogeneous cantilever beam with two longitudinal vertical 

cracks 

 

 

materials which have attracted a considerable amount of attention throughout the world in the 

recent decades (Akbulut and Sonmez 2008, Akbulut et al. 2020, Altunsaray and Bayer 2014, 

Altunsaray 2017, Altunsaray et al. 2019, Butcher et al. 1999, Dolgov 2002, Gasik 2010, Hedia et 

al. 2014, Hirai and Chen 1999, Mahamood and Akinlabi 2017, Markworth et al. 1995, Miyamoto 

et al. 1999, Nemat-Allal et al. 2011, Rezaiee-Pajand and Hozhabrossadati 2016, Rezaiee-Pajand et 

al. 2017, Rezaiee-Pajand et al. 2018, Uslu Uysal and Kremzer 2015, Uslu Uysal 2016, Uslu Uysal 

and Güven, 2015). In fact, the functionally graded materials are new inhomogeneous composites 

made of two or more constituent materials. The ratios of the constituent materials vary smoothly in 

a functionally graded structural member (usually, across thickness). 

The wide use of continuously inhomogeneous (functionally graded) materials in such important 

areas as aeronautical engineering, aerospace industry, nuclear power plants, car industry, 

electronics and biomedicine sets high requirements with regard to the fracture behavior of these 

novel composites (Dolgov 2005, Dolgov 2016, Uslu Uysal and Güven 2016). One of the 

significant crack problems is the longitudinal fracture of continuously inhomogeneous beam 

structures. This is due to the fact that continuously inhomogeneous (functionally graded) materials 

can be built up layer by layer (Mahamood and Akinlabi 2017, Markworth et al. 1995, Miyamoto et 

al. 1999) which is a premise for appearance of longitudinal cracks between layers. It should also 

be mentioned that beams are important structural members in various load-bearing engineering 

applications. Therefore, the problem of longitudinal fracture in continuously inhomogeneous 

beams is both of theoretical and practical interest.     

The basic aim of the present paper is to derive solutions to the time-dependent strain energy 

release rate for two longitudinal vertical cracks in a viscoelastic inhomogeneous cantilever beam 

structure. It should be noted that the previous works on longitudinal fracture deal with obtaining of 

solutions to the strain energy release rates in continuously inhomogeneous beam configurations 

which do not exhibit viscoelastic behavior (Rizov 2017, Rizov 2018, Rizov 2020). A model with 

154



 

 

 

 

 

 

Viscoelastic inhomogeneous beam under time-dependent strains: a longitudinal crack analysis  

one linear spring and two linear dashpots is used for describing the viscoelastic behavior of the 

inhomogeneous beam in the present paper. Solutions to the strain energy release rate are derived 

for two stages of loading. At the first stage, the strains increase with time at a constant speed. The 

strains remain constant with time at the second stage of loading. The change of the strain energy 

release rate with time at both stages of loading is evaluated by applying the solutions derived.  

 

 

2. Viscoelastic model of inhomogeneous beam under time-dependent strains     
   

The present analysis is focused on the inhomogenous viscoelastic beam shown in Fig. 1. The 

cross-section of the beam is a rectangle of width, b, and height, h. The length of the beam is l. The 

beam is clamped in section, S. There are two longitudinal vertical cracks in the beam (Fig. 1). The 

lengths of the right-hand and left-hand cracks are denoted, respectively, by a1 and a2 where a1 > a2. 

The widths of the right-hand, interstitial and left-hand crack arms are b1, b2 and b3, respectively. In 

portion, b2+b3, the beam is divided by the right-hand crack in two crack arms (Fig. 1). The widths 

of the right-hand and left-hand crack arms in beam portion, B2B3, are denoted, respectively, by b1 

and b4 where b4=b2+b3. The beam is loaded in pure bending at the free ends of the right-hand and 

left-hand crack arms so that the angles of rotation, φp and φq, of the free ends of the right-hand and 

left-hand crack arms increase with constant speeds, vp and vq, respectively, at 0≤t≤t1. 

tv pp   (1) 

tvqq   (2) 

where t is time.  

At t>t1, the two angles of rotation do not change with time 

1tv pp   (3) 

1tvqq   (4) 

The interstitial crack arm is free of stresses (Fig. 1).  

The beam under consideration exhibits linear viscoelastic behaviour that is described by using 

the model shown in Fig. 2. The model is a combination of a linear spring with modulus of 

elasticity, E, in series with a linear dashpot with coefficient of viscosity, ηQ, and a second linear 

dashpot with coefficient of viscosity, ηR, connected parallel to the spring and the first dashpot.  

In order to derive the stress-strain-time relationship for the viscoelastic model in Fig. 2, first, the 

equations for equilibrium of the components of the model are written as 

  RE  (5) 

  RQ  (6) 

where, σE, σQ and σR are the stresses in the spring and in the dashpots with coefficients of viscosity, 

ηQ and ηR, respectively. The stresses are expressed as functions of strains by applying the Hooke’s 

law. 
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Fig. 2 Viscoelastic model 

 

 

EE E   (7) 

QQQ    (8) 

RRR    (9) 

where, εE, εQ and εR are the strains in the spring and in the dashpots with coefficients of viscosity, 

ηQ and ηR, respectively. 

The strains are related as (Fig. 2) 

  QE  (10) 

Besides 

 R
 (11) 

The strain,  , increases with constant speed, v , at 
10 tt   

vt  (12) 

By combining of (7) - (12), one obtains 
















Q

R

Q

Ev
E







 1  (13) 

The solution of (13) is found as 

 te
v 




  1  (14) 

where 

Q

E


   (15) 
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Viscoelastic inhomogeneous beam under time-dependent strains: a longitudinal crack analysis  
















Q

RE



 1  (16) 

By combining of (12) and (14), one derives the following stress-strain-time relationship: 

 te
t






  1  (17) 

At t≥t1, the strain, ε, is equal to vt1 and does not change with time, i.e. 

1vt  (18) 

By using of (7) - (11) and (18), one derives 





Q

E
  (19) 

The solution of (19) is obtained as 

 tt
E

Qe



1


  

(20) 

where 

 11
1

t
e

t






 

  (21) 

Formula (21) is the stress-strain-time relationship at t≥t1.    

The beam in Fig. 1 exhibits continuous material inhomogeneity along its height. The following 

exponential laws are used to describe the distributions of E, ηQ and ηR along the height of the 

beam: 

h

z
h

f

eEE

5
2

0



  
(22) 

h

z
h

g

QQ e

5

0

2


  
(23) 

h

z
h

r

RR e

5

0

2


  
(24) 

where 

22
5

h
z

h
  (25) 

In formulae (22) - (25), z5 is the vertical centroidal axis of the beam cross-section, E0, ηQ0 and  
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Fig. 3 Cross-section of the right-hand crack arm 

 

 

ηQ5 are the values of E, ηQ and ηR at the upper surfaces of the beam, respectively. The variations of 

E, ηQ and ηR along the height of the beam are controlled by the parameters, f, g and r, respectively. 

 

 

3. Deriving the time-dependent strain energy release rate  
 

The balance of the energy is analyzed in order to derive the time-dependent strain energy 

release rate for the longitudinal vertical cracks in the viscoelastic beam configuration shown in 

Fig. 1.  

First, the time-dependent strain energy release rate, Ga1, is obtained at increase of the right-hand 

crack at 0t≥t1. For this purpose, the balance of the energy is written a 

11

1
1

ahGa
a

U
MM aqqpp  




  (26) 

where Mp and Mq are the bending moments in the right-hand and left-hand crack arms, 

respectively, U  is the time-dependent strain energy stored in the beam structure, δa1 is a small 

increase of the right-hand crack. From (26), the strain energy release rate is derived as  

111

1
1 a

U

hah

M

ah

M
G

qqpp

a














 (27) 

The time-dependent strain energy is found as 

4321 UUUUU   (28) 

where U1, U2, U3 and U4 are the strain energies stored in the right-hand and left-hand crack arms, 

in portion, B2B3, of the left-hand crack arm and in the un-cracked beam portion, a1≥x5≥l, 

respectively. It should be mentioned that formula (28) takes into account the fact that the 

interstitial crack arm is free of stresses.  
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Viscoelastic inhomogeneous beam under time-dependent strains: a longitudinal crack analysis  

The time dependent strain energy in the right-hand crack arm is written as 

101

2

2

111 dzubaU

h

h



  (29) 

where u01 is the time-dependent strain energy density in this crack arm, z1 is the vertical centroidal 

axis of the cross-section of the crack arm (Fig. 3). 

The time-dependent strain energy density is expressed as 


2

1
01 u  (30) 

The distribution of strains is treated by applying the hypothesis of Bernoulli for plane sections 

since beams of high length to height ratio are considered in the present paper. 

Therefore, the distribution of strains along the height of the right-hand crack arm is written as 

 nzz 111   (31) 

where 

22
1

h
z

h
  (32) 

In formulae (31) and (32), k1is the curvature of this crack arm, z1n is the coordinate of the 

neutral axis.  

By combining of (17), (30) and (31), one obtains 

   tn e
t

zz
u 



 


 1
2

1
2

11

2

1
01  (33) 

The following approach is used to determine the curvature and the coordinate of the neutral 

axis. First, the angles of rotation of the free ends of the right-hand and left-hand crack arms are 

expressed as functions of the curvatures by using the integrals of Maxwell-Mohr 

 1411 alap    (34) 

   1421322 alaaaq    (35) 

where K2, K3 and K4 are the curvatures of left-hand crack arm, the portion, B2B3, of the left-hand 

crack arm and the un-cracked portion of the beam, respectively. There are four unknowns, K1, K2, 

K3 and K4, in Eqs. (34) and (35).  

Four equations are written by using the fact that the axial forces in the right-hand crack arm, in 

portions, B1B2 and B2B3, of the left-hand crack arm and in the un-cracked beam portion are equal to 

zero. 

01

2

2

1 


dzb

h

h

  (36) 
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02

2

2

3 


dzb

h

h

  (37) 

0)( 3

2

2

32  


dzbb

h

h

  (38) 

04

2

2




dzb

h

h

  (39) 

where σα, σβ and σδ are the stresses in portions, B1B2 and B2B3, of the left-hand crack arm and in the 

un-cracked beam portion, respectively, Z2, Z3 and z4 are the vertical centroidal axes of portions, 

B1B2 and B2B3, of the left-hand crack arm and the un-cracked beam portion, respectively. The 

stress, σα, is found by replacing of ε with εα in (17) where εα is the strain in portion, B1B2, of the 

left-hand crack arm. The distribution of εα is expressed by replacing of K1, Z1 and Z1n with K2, 

Z2and Z2n in (31). Here, Z2n is the coordinate of the neutral axis in portion, B1B2, of the left-hand 

crack arm. Formula (17) is applied also obtain σβ. For this purpose, ε is replaced with εβ. In order 

to obtain the distribution of the strain, εβ, the quantities, K1, Z1 and Z1n are replaced, respectively, 

with K3, Z3 and Z3n in (31) where Z3n is the coordinate of neutral axis in portion, B1B2, of the left-

hand crack arm. The strain, ε, is replaced with δε in (17) to obtain the stress, σδ, where εδ is the 

strain in the un-cracked beam portion. The distribution of εδ is found be replacing of K1, Z1 and Z1n 

with K4, Z4 and Z1n, respectively, in (31). Here Z4n is the coordinate of neutral axis in the un-

cracked beam portion.     

One equation is obtained by considering the equilibrium of the bending moments in portions, 

B1B2 and B2B3, of the left-hand crack arm 

  33

2

2

3222

2

2

3 dzzbbdzzb

h

h

h

h

  


  (40) 

Further one equation is written by using the fact that the sum of bending moments in the right-

hand crack arm and in portion, B2B3, of the left hand crack arm is equal to the bending moment in 

the un-cracked beam portion 

  44

2

2

33

2

2

3211

2

2

1 dzzbdzzbbdzzb

h

h

h

h

h

h

  


  (41) 

After substituting of stresses in (36), (37), (38), (39), (40) and (41), these equations are solved 

together with (34) and (35) with respect to K1, K2, K3, K4, Z1n, Z2n, Z3n and Z4n at various values of 

time by using the MatLab computer program.  
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The time-dependent strain energy in portion, B1B2, of the left-hand crack arm is obtained as 

202

2

2

322 dzubaU

h

h



  (42) 

where the time-dependent strain energy density, u02, is found by replacing of K1, z1and z1n with K2, 

Z2 and Z2n in (33).  

The time-dependent strain energies stored in portion, B2B3, of the left-hand crack arm and in the 

un-cracked beam portion are expressed as   

303

2

2

32213 ))(( dzubbaaU

h

h



  (43) 

404

2

2

14 )( dzubalU

h

h



  (44) 

where u03 and u04 are the time-dependent strain energy densities. The quantities, K1, Z1 and Z1n are 

replaced with K3, Z3 and Z3n, respectively, in (33) to derive u03. The strain energy density, u04, is 

obtained by replacing of K1, Z1 and Z1n with K4, Z4 and Z4n, respectively, in (33).      

The bending moments, Mp and Mq, which are involved in the expression for the strain energy 

release rate (27) are obtained as 

11

2

2

1 dzzbM

h

h

p 


  (45) 

22

2

2

3 dzzbM

h

h

q 


  (46) 

By substituting of in (28), (29), (34), (42), (43), (44), (45) and (46) in (27), one derives the 

following time-dependent solution to the strain energy release rate at increase of the right-hand 

crack arm: 

  11

2

2

41
1

1
dzz

h

b
G

h

h

a  


    


22

2

2

43
3 dzz

h

b

h

h

 101

2

2

1

1
dzub

h

h

h







  

101

2

2

1

1
dzub

h

h

h







 303

2

2

32 )( dzubb

h

h



 



 



404

2

2

dzub

h

h

 

(47) 
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The integration in (47) is performed by applying the MatLab Computer program. Formula (47) 

is used to calculate the strain energy release rate at various values of time. It should be noted that 

(47) is applicable at 0≤t≤t1. 

The strain energy release rate at increase of the right-hand crack is obtained also at t≥t1. For this 

purpose, (47) is applied. First, by combining of (20), (30) and (31), one derives the following 

expression for the time-dependent strain energy density in the right-hand crack arm:     

 
 tt

E

n
Qezzu




1

2

11

2

101
2

1 
  (48) 

The curvatures and the coordinates of the neutral axes in the right-hand crack arm, in portions, 

B1B2 and B2B3, of the left-hand crack arm and in the un-cracked beam portion are determined by 

applying equations (34), (35), (36), (37), (38), (39), (40) and (41). For this purpose, the stress in 

the right-hand crack arm is obtained by (20). The stresses, σα, σβ and σδ, are found by replacing of ε 

with εα, εβ and, εδ respectively, in (20).  

Formula (48) is applied also to derive the time-dependent strain energy density in portion, 

21BB , of the left-hand crack arm by replacing of K1, Z1 and Z1n with K2, Z2 and Z2n, respectively. 

The time-dependent strain energy density in portion, B3B3, of the left-hand crack arm is found 

by (48). For this purpose, K1, Z1 and Z1n are replaced with K3, Z3 and Z3n, respectively.  

The quantities, K1, Z1 and Z1n are replaced with K4, Z4 and Z4n, respectively, in (48) to calculate 

the time-dependent strain energy density in the un-cracked beam portion.  

Finally, after substituting of the stresses and the time-dependent strain energy densities in (47), 

the strain energy release rate is calculated at various values of time (the integration is carried-out 

by using the MatLab computer program).  

The time-dependent strain energy release rate is derived also at increase of the left-hand crack 

arm. For this purpose, α1 is replaced with α2 in (27). First, a solution to the strain energy release 

rate is obtained at 0≤t≤t1. By combining of (27), (28), (29), (34), (42), (43), (44), (45) and (46), 

one derives 

   


22

2

2

32
3

2
dzz

h

b
G

h

h

a  202

2

2

3

1
dzub

h

h

h







 




 



303

2

2

32 )( dzubb

h

h

 (49) 

The MatLab computer program is used to carry-out the integration in (49). Formula (49) is 
applied to calculate the strain energy release rate at various values of time.  

The time-dependent strain energy release rate at increase of the left-hand crack is found also at 
t≥t1. For this purpose, the stress, σα, obtained by replacing of ε with εα in (20), and the time-
dependent strain energy densities, u02 and u03, obtained by performing the necessary replacements 
in (48), are substituted in (49). Calculations of the strain energy release rate by (49) are carried-out 
at various values of time.    

Time-dependent solutions to the strain energy release rate are derived also by differentiating of 
the time-dependent strain energy with respect to the crack area. First, a solution is obtained at 
increase of the right-hand crack at 0≥t≥t1. For this purpose, the strain energy release rate is written 
as 

1
1 hda

dU
Ga   (50) 
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By substituting of (28), (29), (42), (43) and (44) in (50), one derives 

101

2

2

1

1
1

dzub
h

G

h

h

a 






 303

2

2

32 )( dzubb

h

h



 



 



404

2

2

dzub

h

h

 (51) 

where the time-dependent strain energy density, u01, is found by using (33). The time-dependent 

strain energy densities, u02 and u03, are obtained by performing the necessary replacements in (33). 

Formula (51) is applied to calculate the strain energy release rate at various values of time. It 

should be mentioned that the strain energy release rate found by (51) is exact match of that 

obtained by using (47). This fact proves the correctness of the solutions derived.  

The time-dependent strain energy release rate at increase of the right-hand crack is found also 

at t≥t1. For this purpose, the time-dependent strain energy densities obtained by using formula (48) 

are substituted in (51). Calculations of the strain energy release rate are performed at various 

values of time. The results obtained match exactly these found by considering the balance of the 

energy.    

In order to derive the time-dependent strain energy release rate at increase of the left-hand 

crack, formula (51) is re-written as 

2
2 hda

dU
Ga   (52) 

First, a solution is obtained at 0≥t≥t1. For this purpose, (28), (29), (42), (43) and (44) are 

substituted in (52). The result is 

202

2

2

3

1
2

dzub
h

G

h

h

a 






 




 



303

2

2

32 )( dzubb

h

h

 (53) 

where the time-dependent strain energy densities are found by using (48). By applying (53), the 

strain energy release rate is calculated at various values of time (the integration is carried-out by  

 

 

 
Fig. 4 The strain energy release rate in non-dimensional form presented as a function of the non-

dimensional time for the right-hand crack 
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Fig. 5 The strain energy release rate in non-dimensional form presented as a function of f for the 

right-hand crack (curve 1 – at b1/b=0.1, curve 2 - at b1/b=0.2 and curve 3 - at b1/b=0.3) 

 

 
Fig. 6 The strain energy release rate in non-dimensional form presented as a function of the non-

dimensional time for the left-hand crack 

 

 
Fig. 7 The strain energy release rate in non-dimensional form presented as a function of g for the 

left-hand crack (curve 1 – at b3/b1=0.15, curve 2 – b3/b1=0.30 at and curve 3 – at b3/b1=0.45) 

 

 

the MatLab computer program). The strain energy release rate found by (53) is exact match of that 

obtained by (49) which is prove for correctness of the solutions. 

Formula (53) is applied also to calculate the time-dependent strain energy release rate at increase 

of the left-hand crack at t≥t1. In this case, the time-dependent strain energy densities which are  
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Fig. 8 The strain energy release rate in non-dimensional form presented as a function of parameter, r (curve 

1 – for the right-hand crack and curve 2 – for the left-hand crack) 
 

 

involved in (53) are found by using (49). It should be noted that the strain energy release rate 

calculated by (53) is exact match of that derived by considering the balance of the energy at 

increase of the left-hand crack at t≥t1.  

 
 
4. Parametric analysis   

 

A parametric analysis of the time-dependent strain energy release rates for the longitudinal 

cracks in the viscoelastic inhomogeneous cantilever beam shown in Fig. 1 is carried-out. For this 

purpose, calculations are performed by applying the solutions derived in section 3 of this paper. 

The strain energy release rate is expressed in non-dimensional form by using the formula 

GN=G/(E0b). One of the aims of the parametric analysis is to evaluate the change of the strain 

energy release rate with time. The influences of the continuous material inhomogeneity and the 

locations of the cracks along the width of the beam on the strain energy release rate are assessed 

too. It is assumed that b=0.010 m, h=0.015 m, vp=0.12x10-7rad/sec and vq=0.10x10-7 rad/sec. 

In order to evaluate the change of the strain energy release rate with time, first, calculations are 

carried-out by applying the solutions derived at increase of the right-hand crack. The results 

obtained are shown in Fig. 4 where the strain energy release rate in non-dimensional form is 

presented as a function of the non-dimensional time. The time is expressed in non-dimensional 

form by applying the formula tN=tE0/ηQ0. The curve in Fig. 4 indicates that the strain energy 

release rate increases at 0≥t≥t1 (this finding is attributed to the increase of the angles of rotation of 

the free ends of the right-hand and left-hand crack arms). One can observe also in Fig. 4 that the 

strain energy release rate decreases at 
1tt   (this behavior is due to stress relaxation at constant 

applied strain at t≥t1).    

The influence of the continuous variation of the modulus of elasticity along the height of the 

beam on the strain energy release rate is investigated. For this purpose, calculations are performed 

at various values of parameter, f, by applying the solution of the strain energy release rate for the 

right-hand crack. The influence of the location of the right-hand crack along the width of the beam 

on the strain energy release rate is investigated by calculating of the strain energy release rate at 

various b1/b ratios. 
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One can get an idea about the influence of the variation of the modulus of elasticity and the 

location of the crack on the strain energy release rate from Fig. 5 where the strain energy release 

rate in non-dimensional form is presented as a function of f at three b1/b ratios. 

It can be observed in Fig. 5 that the strain energy relse rate decreases with increasing of f. The 

curves in Fig. 5 show also that the strain energy release rate increases with increasing of b1/b ratio  

The change of the strain energy release rate with time is assessed also for the left-hand crack.  

The strain energy release rate calculated by using the solutions derived at increase of the left-

hand crack is presented in non-dimensional form as a function of the non-dimensional time in Fig. 

6.  

It can be observed in Fig. 6 that the strain energy release rate increases with time at 0≥t≥t1. At 

t≥t1, the strain energy release rate decreases with time (Fig. 6).    

The effect of the continuous variation of the coefficient of viscosity, ηQ, along the height of the 

beam and the location of the left-hand crack along the beam width on the strain energy release rate 

is studied by carrying-out calculations of the strain energy release rate at various values of 

parameter, g, and various b3/b1 ratios (the b3/b1 ratio characterizes the location of the left-hand 

crack along the beam width). The strain energy release rate in non-dimensional form is presented 

as a function of g in Fig. 7 at three b3/b1 ratios. It is evident from Fig. 7 that the strain energy 

release rate increases with increasing of b3/b1 ratio. The curves in Fig. 7 indicate also that the strain 

energy release rate decreases with increasing of g.   

The influence of the continuous variation of ηR along the height of the beam on the strain 

energy release rate is illustrated in Fig. 8 where the strain energy release rate calculated by using 

the solutions (47) and (53) is presented in non-dimensional form as a function of parameter, r. It 

can be observed in Fig. 8 that the increase of r leads to decrease of the strain energy release rate. 

One can observe also in Fig. 8 that the strain energy release rate for the left-hand crack is lower 

than that for the right-hand crack. 

 

 

5. Conclusions 
 

An analytical study of two longitudinal vertical cracks in a viscoelastic continuously 

inhomogeneous cantilever beam structure is developed. A viscoelastic model with one linear 

spring and two linear dashpots is used for describing the mechanical behavior of the beam. The 

viscoelastic model is under strain that increases at a constant speed with time up to a given 

magnitude and then the strain remains constant. Stress-strain-time relationships of the viscoelastic 

model are derived for both stages (at increasing strain and at constant strain). The modulus of 

elasticity of the spring and the coefficients of viscosity of the two dashpots of the viscoelastic 

model vary continuously along the height of the beam since the beam is continuously 

inhomogeneous along its height. The two longitudinal cracks are located arbitrary along the width 

of the beam. Solutions to the time-dependent strain energy release rate which take into account the 

viscoelastic behavior of the continuously inhomogeneous material are derived for both cracks. For 

this purpose, the balance of the energy is analyzed. The strain energy stored in the beam is 

obtained by integrating of the time-dependent strain energy density. The time-dependent strain 

energy release rate is found for both stages (at increasing strain with time and at constant strain).  

Solutions to the time-dependent strain energy release rate are obtained also by differentiating of 

the time-dependent strain energy with respect to the crack area. The two solutions produce 

identical results which prove their correctness. The change of the strain energy release rate with 
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time is analyzed. The analysis reveals that the strain energy release rate increases with time at the 

first stage of loading (when the strain increases at constant speed). At the second stage of loading, 

when the strain remains constant with time, the strain energy release rate decreases with time (this 

is due to the stress relaxation under constant applied strain). The influence of the continuous 

material inhomogeneity on the strain energy release rate is evaluated. It is found that the strain 

energy release rate decreases with increasing of f, g and r. Concerning the effect of the locations of 

the two cracks along the width of the beam, the calculations indicate that the strain energy release 

rate increases with increasing of b1/b and b3/b ratios. The analysis shows that the strain energy 

release rate for the right-hand crack is higher than that for the left-hand crack. The findings of the 

present study clearly indicate that the strain energy release rate for longitudinal vertical cracks in 

viscoelastic continuously inhomogeneous beam structures depends to a great extent on the 

character of the variation of the strains with time. Therefore, the variation of the strains with time 

has to be considered in fracture mechanics based preliminary structural design of inhomogeneous 

members and components which exhibit viscoelastic behavior. 
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